![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrng0 | Structured version Visualization version GIF version |
Description: The additive identity of R is the complex number 0. (Contributed by AV, 11-Feb-2020.) |
Ref | Expression |
---|---|
2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
Ref | Expression |
---|---|
2zrng0 | ⊢ 0 = (0g‘𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cncrng 21424 | . . 3 ⊢ ℂfld ∈ CRing | |
2 | crngring 20272 | . . 3 ⊢ (ℂfld ∈ CRing → ℂfld ∈ Ring) | |
3 | ringmnd 20270 | . . 3 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ℂfld ∈ Mnd |
5 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
6 | 5 | 0even 47960 | . 2 ⊢ 0 ∈ 𝐸 |
7 | ssrab2 4103 | . . . 4 ⊢ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⊆ ℤ | |
8 | 5, 7 | eqsstri 4043 | . . 3 ⊢ 𝐸 ⊆ ℤ |
9 | zsscn 12647 | . . 3 ⊢ ℤ ⊆ ℂ | |
10 | 8, 9 | sstri 4018 | . 2 ⊢ 𝐸 ⊆ ℂ |
11 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
12 | cnfldbas 21391 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
13 | cnfld0 21428 | . . 3 ⊢ 0 = (0g‘ℂfld) | |
14 | 11, 12, 13 | ress0g 18800 | . 2 ⊢ ((ℂfld ∈ Mnd ∧ 0 ∈ 𝐸 ∧ 𝐸 ⊆ ℂ) → 0 = (0g‘𝑅)) |
15 | 4, 6, 10, 14 | mp3an 1461 | 1 ⊢ 0 = (0g‘𝑅) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 ⊆ wss 3976 ‘cfv 6573 (class class class)co 7448 ℂcc 11182 0cc0 11184 · cmul 11189 2c2 12348 ℤcz 12639 ↾s cress 17287 0gc0g 17499 Mndcmnd 18772 Ringcrg 20260 CRingccrg 20261 ℂfldccnfld 21387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-addf 11263 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-starv 17326 df-tset 17330 df-ple 17331 df-ds 17333 df-unif 17334 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-cmn 19824 df-mgp 20162 df-ring 20262 df-cring 20263 df-cnfld 21388 |
This theorem is referenced by: 2zrngagrp 47972 |
Copyright terms: Public domain | W3C validator |