| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > 2zrng0 | Structured version Visualization version GIF version | ||
| Description: The additive identity of R is the complex number 0. (Contributed by AV, 11-Feb-2020.) |
| Ref | Expression |
|---|---|
| 2zrng.e | ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} |
| 2zrngbas.r | ⊢ 𝑅 = (ℂfld ↾s 𝐸) |
| Ref | Expression |
|---|---|
| 2zrng0 | ⊢ 0 = (0g‘𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cncrng 21349 | . . 3 ⊢ ℂfld ∈ CRing | |
| 2 | crngring 20203 | . . 3 ⊢ (ℂfld ∈ CRing → ℂfld ∈ Ring) | |
| 3 | ringmnd 20201 | . . 3 ⊢ (ℂfld ∈ Ring → ℂfld ∈ Mnd) | |
| 4 | 1, 2, 3 | mp2b 10 | . 2 ⊢ ℂfld ∈ Mnd |
| 5 | 2zrng.e | . . 3 ⊢ 𝐸 = {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} | |
| 6 | 5 | 0even 48160 | . 2 ⊢ 0 ∈ 𝐸 |
| 7 | ssrab2 4055 | . . . 4 ⊢ {𝑧 ∈ ℤ ∣ ∃𝑥 ∈ ℤ 𝑧 = (2 · 𝑥)} ⊆ ℤ | |
| 8 | 5, 7 | eqsstri 4005 | . . 3 ⊢ 𝐸 ⊆ ℤ |
| 9 | zsscn 12594 | . . 3 ⊢ ℤ ⊆ ℂ | |
| 10 | 8, 9 | sstri 3968 | . 2 ⊢ 𝐸 ⊆ ℂ |
| 11 | 2zrngbas.r | . . 3 ⊢ 𝑅 = (ℂfld ↾s 𝐸) | |
| 12 | cnfldbas 21317 | . . 3 ⊢ ℂ = (Base‘ℂfld) | |
| 13 | cnfld0 21353 | . . 3 ⊢ 0 = (0g‘ℂfld) | |
| 14 | 11, 12, 13 | ress0g 18738 | . 2 ⊢ ((ℂfld ∈ Mnd ∧ 0 ∈ 𝐸 ∧ 𝐸 ⊆ ℂ) → 0 = (0g‘𝑅)) |
| 15 | 4, 6, 10, 14 | mp3an 1463 | 1 ⊢ 0 = (0g‘𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 ∃wrex 3060 {crab 3415 ⊆ wss 3926 ‘cfv 6530 (class class class)co 7403 ℂcc 11125 0cc0 11127 · cmul 11132 2c2 12293 ℤcz 12586 ↾s cress 17249 0gc0g 17451 Mndcmnd 18710 Ringcrg 20191 CRingccrg 20192 ℂfldccnfld 21313 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-addf 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-7 12306 df-8 12307 df-9 12308 df-n0 12500 df-z 12587 df-dec 12707 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-starv 17284 df-tset 17288 df-ple 17289 df-ds 17291 df-unif 17292 df-0g 17453 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-grp 18917 df-cmn 19761 df-mgp 20099 df-ring 20193 df-cring 20194 df-cnfld 21314 |
| This theorem is referenced by: 2zrngagrp 48172 |
| Copyright terms: Public domain | W3C validator |