| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑡(𝜑 ∧ 𝑥 ∈ 𝑋) |
| 2 | | nfcv 2905 |
. . . . . 6
⊢
Ⅎ𝑡((𝐻‘𝑍)‘𝑥) |
| 3 | | dvnprodlem2.t |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ Fin) |
| 4 | | dvnprodlem2.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ⊆ 𝑇) |
| 5 | | ssfi 9213 |
. . . . . . . 8
⊢ ((𝑇 ∈ Fin ∧ 𝑅 ⊆ 𝑇) → 𝑅 ∈ Fin) |
| 6 | 3, 4, 5 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Fin) |
| 7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ Fin) |
| 8 | | dvnprodlem2.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (𝑇 ∖ 𝑅)) |
| 9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑍 ∈ (𝑇 ∖ 𝑅)) |
| 10 | 8 | eldifbd 3964 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑅) |
| 11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ 𝑍 ∈ 𝑅) |
| 12 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑅) → 𝜑) |
| 13 | 4 | sselda 3983 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
| 14 | | dvnprodlem2.h |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) |
| 15 | 12, 13, 14 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑅) → (𝐻‘𝑡):𝑋⟶ℂ) |
| 16 | 15 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑅) → (𝐻‘𝑡):𝑋⟶ℂ) |
| 17 | | simplr 769 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
| 18 | 16, 17 | ffvelcdmd 7105 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑅) → ((𝐻‘𝑡)‘𝑥) ∈ ℂ) |
| 19 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → (𝐻‘𝑡) = (𝐻‘𝑍)) |
| 20 | 19 | fveq1d 6908 |
. . . . . 6
⊢ (𝑡 = 𝑍 → ((𝐻‘𝑡)‘𝑥) = ((𝐻‘𝑍)‘𝑥)) |
| 21 | | id 22 |
. . . . . . . . 9
⊢ (𝜑 → 𝜑) |
| 22 | | eldifi 4131 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝑇 ∖ 𝑅) → 𝑍 ∈ 𝑇) |
| 23 | 8, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑇) |
| 24 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → 𝑍 ∈ 𝑇) |
| 25 | | id 22 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝜑 ∧ 𝑍 ∈ 𝑇)) |
| 26 | | eleq1 2829 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑍 → (𝑡 ∈ 𝑇 ↔ 𝑍 ∈ 𝑇)) |
| 27 | 26 | anbi2d 630 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑍 → ((𝜑 ∧ 𝑡 ∈ 𝑇) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇))) |
| 28 | 19 | feq1d 6720 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑍 → ((𝐻‘𝑡):𝑋⟶ℂ ↔ (𝐻‘𝑍):𝑋⟶ℂ)) |
| 29 | 27, 28 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑍 → (((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝐻‘𝑍):𝑋⟶ℂ))) |
| 30 | 29, 14 | vtoclg 3554 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑇 → ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝐻‘𝑍):𝑋⟶ℂ)) |
| 31 | 24, 25, 30 | sylc 65 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝐻‘𝑍):𝑋⟶ℂ) |
| 32 | 21, 23, 31 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘𝑍):𝑋⟶ℂ) |
| 33 | 32 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐻‘𝑍):𝑋⟶ℂ) |
| 34 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
| 35 | 33, 34 | ffvelcdmd 7105 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐻‘𝑍)‘𝑥) ∈ ℂ) |
| 36 | 1, 2, 7, 9, 11, 18, 20, 35 | fprodsplitsn 16025 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥) = (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))) |
| 37 | 36 | mpteq2dva 5242 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥)))) |
| 38 | 37 | oveq2d 7447 |
. . 3
⊢ (𝜑 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))))) |
| 39 | 38 | fveq1d 6908 |
. 2
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥)))‘𝐽) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))))‘𝐽)) |
| 40 | | dvnprodlem2.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
| 41 | | dvnprodlem2.x |
. . 3
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
| 42 | 1, 7, 18 | fprodclf 16028 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) ∈ ℂ) |
| 43 | | dvnprodlem2.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (0...𝑁)) |
| 44 | | elfznn0 13660 |
. . . 4
⊢ (𝐽 ∈ (0...𝑁) → 𝐽 ∈
ℕ0) |
| 45 | 43, 44 | syl 17 |
. . 3
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
| 46 | | eqid 2737 |
. . 3
⊢ (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) |
| 47 | | eqid 2737 |
. . 3
⊢ (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) |
| 48 | | dvnprodlem2.c |
. . . . . . . . . 10
⊢ 𝐶 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) |
| 49 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑅 → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m 𝑅)) |
| 50 | | rabeq 3451 |
. . . . . . . . . . . . 13
⊢
(((0...𝑛)
↑m 𝑠) =
((0...𝑛) ↑m
𝑅) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
| 51 | 49, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
| 52 | | sumeq1 15725 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑅 → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ 𝑅 (𝑐‘𝑡)) |
| 53 | 52 | eqeq1d 2739 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑅 → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛)) |
| 54 | 53 | rabbidv 3444 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
| 55 | 51, 54 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
| 56 | 55 | mpteq2dv 5244 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑅 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
| 57 | | ssexg 5323 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ⊆ 𝑇 ∧ 𝑇 ∈ Fin) → 𝑅 ∈ V) |
| 58 | 4, 3, 57 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ V) |
| 59 | | elpwg 4603 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ V → (𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇)) |
| 60 | 58, 59 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇)) |
| 61 | 4, 60 | mpbird 257 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ 𝒫 𝑇) |
| 62 | 61 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑅 ∈ 𝒫 𝑇) |
| 63 | | nn0ex 12532 |
. . . . . . . . . . . 12
⊢
ℕ0 ∈ V |
| 64 | 63 | mptex 7243 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) ∈ V |
| 65 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) ∈ V) |
| 66 | 48, 56, 62, 65 | fvmptd3 7039 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐶‘𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
| 67 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (0...𝑛) = (0...𝑘)) |
| 68 | 67 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((0...𝑛) ↑m 𝑅) = ((0...𝑘) ↑m 𝑅)) |
| 69 | | rabeq 3451 |
. . . . . . . . . . . 12
⊢
(((0...𝑛)
↑m 𝑅) =
((0...𝑘) ↑m
𝑅) → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
| 70 | 68, 69 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
| 71 | | eqeq2 2749 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘)) |
| 72 | 71 | rabbidv 3444 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
| 73 | 70, 72 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
| 74 | 73 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑛 = 𝑘) → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
| 75 | | elfznn0 13660 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℕ0) |
| 76 | 75 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℕ0) |
| 77 | | fzfid 14014 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...𝑘) ∈ Fin) |
| 78 | | mapfi 9388 |
. . . . . . . . . . . 12
⊢
(((0...𝑘) ∈ Fin
∧ 𝑅 ∈ Fin) →
((0...𝑘) ↑m
𝑅) ∈
Fin) |
| 79 | 77, 6, 78 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → ((0...𝑘) ↑m 𝑅) ∈ Fin) |
| 80 | 79 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((0...𝑘) ↑m 𝑅) ∈ Fin) |
| 81 | | ssrab2 4080 |
. . . . . . . . . . 11
⊢ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ⊆ ((0...𝑘) ↑m 𝑅) |
| 82 | 81 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ⊆ ((0...𝑘) ↑m 𝑅)) |
| 83 | 80, 82 | ssexd 5324 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ V) |
| 84 | 66, 74, 76, 83 | fvmptd 7023 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
| 85 | | ssfi 9213 |
. . . . . . . . . 10
⊢
((((0...𝑘)
↑m 𝑅)
∈ Fin ∧ {𝑐 ∈
((0...𝑘) ↑m
𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ⊆ ((0...𝑘) ↑m 𝑅)) → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ Fin) |
| 86 | 79, 81, 85 | sylancl 586 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ Fin) |
| 87 | 86 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ Fin) |
| 88 | 84, 87 | eqeltrd 2841 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ∈ Fin) |
| 89 | 88 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑅)‘𝑘) ∈ Fin) |
| 90 | 75 | faccld 14323 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝐽) → (!‘𝑘) ∈ ℕ) |
| 91 | 90 | nncnd 12282 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝐽) → (!‘𝑘) ∈ ℂ) |
| 92 | 91 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (!‘𝑘) ∈ ℂ) |
| 93 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑅 ∈ Fin) |
| 94 | 93 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑅 ∈ Fin) |
| 95 | | elfznn0 13660 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ (0...𝑘) → 𝑧 ∈ ℕ0) |
| 96 | 95 | ssriv 3987 |
. . . . . . . . . . . . . 14
⊢
(0...𝑘) ⊆
ℕ0 |
| 97 | 96 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (0...𝑘) ⊆
ℕ0) |
| 98 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) |
| 99 | 84 | eleq2d 2827 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑐 ∈ ((𝐶‘𝑅)‘𝑘) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘})) |
| 100 | 99 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (𝑐 ∈ ((𝐶‘𝑅)‘𝑘) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘})) |
| 101 | 98, 100 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
| 102 | 81 | sseli 3979 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} → 𝑐 ∈ ((0...𝑘) ↑m 𝑅)) |
| 103 | 101, 102 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐 ∈ ((0...𝑘) ↑m 𝑅)) |
| 104 | | elmapi 8889 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ ((0...𝑘) ↑m 𝑅) → 𝑐:𝑅⟶(0...𝑘)) |
| 105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐:𝑅⟶(0...𝑘)) |
| 106 | 105 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑐:𝑅⟶(0...𝑘)) |
| 107 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑅) |
| 108 | 106, 107 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑘)) |
| 109 | 97, 108 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈
ℕ0) |
| 110 | 109 | faccld 14323 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℕ) |
| 111 | 110 | nncnd 12282 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℂ) |
| 112 | 94, 111 | fprodcl 15988 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℂ) |
| 113 | 110 | nnne0d 12316 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ≠ 0) |
| 114 | 94, 111, 113 | fprodn0 16015 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
| 115 | 92, 112, 114 | divcld 12043 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) ∈ ℂ) |
| 116 | 115 | adantlr 715 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) ∈ ℂ) |
| 117 | 94 | adantlr 715 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑅 ∈ Fin) |
| 118 | 21 | ad4antr 732 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝜑) |
| 119 | 118, 13 | sylancom 588 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
| 120 | | elfzuz3 13561 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ (ℤ≥‘𝑘)) |
| 121 | | fzss2 13604 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈
(ℤ≥‘𝑘) → (0...𝑘) ⊆ (0...𝐽)) |
| 122 | 120, 121 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (0...𝑘) ⊆ (0...𝐽)) |
| 123 | 122 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0...𝑘) ⊆ (0...𝐽)) |
| 124 | 45 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐽 ∈ ℤ) |
| 125 | | dvnprodlem2.n |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
| 126 | 125 | nn0zd 12639 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 127 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐽 ∈ (0...𝑁) → 𝐽 ≤ 𝑁) |
| 128 | 43, 127 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐽 ≤ 𝑁) |
| 129 | 124, 126,
128 | 3jca 1129 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ≤ 𝑁)) |
| 130 | | eluz2 12884 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘𝐽) ↔ (𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ≤ 𝑁)) |
| 131 | 129, 130 | sylibr 234 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐽)) |
| 132 | | fzss2 13604 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘𝐽) → (0...𝐽) ⊆ (0...𝑁)) |
| 133 | 131, 132 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0...𝐽) ⊆ (0...𝑁)) |
| 134 | 133 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0...𝐽) ⊆ (0...𝑁)) |
| 135 | 123, 134 | sstrd 3994 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0...𝑘) ⊆ (0...𝑁)) |
| 136 | 135 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (0...𝑘) ⊆ (0...𝑁)) |
| 137 | 136, 108 | sseldd 3984 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑁)) |
| 138 | 137 | adantllr 719 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑁)) |
| 139 | | fvex 6919 |
. . . . . . . . . . 11
⊢ (𝑐‘𝑡) ∈ V |
| 140 | | eleq1 2829 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑐‘𝑡) → (𝑗 ∈ (0...𝑁) ↔ (𝑐‘𝑡) ∈ (0...𝑁))) |
| 141 | 140 | 3anbi3d 1444 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑐‘𝑡) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑐‘𝑡) ∈ (0...𝑁)))) |
| 142 | | fveq2 6906 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑐‘𝑡) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))) |
| 143 | 142 | feq1d 6720 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑐‘𝑡) → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ)) |
| 144 | 141, 143 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑐‘𝑡) → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑐‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ))) |
| 145 | | dvnprodlem2.dvnh |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) |
| 146 | 139, 144,
145 | vtocl 3558 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑐‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
| 147 | 118, 119,
138, 146 | syl3anc 1373 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
| 148 | | simpllr 776 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
| 149 | 147, 148 | ffvelcdmd 7105 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
| 150 | 117, 149 | fprodcl 15988 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
| 151 | 116, 150 | mulcld 11281 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
| 152 | 89, 151 | fsumcl 15769 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) → Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
| 153 | 152 | fmpttd 7135 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))):𝑋⟶ℂ) |
| 154 | | dvnprodlem2.ind |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
| 155 | 154 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
| 156 | | 0zd 12625 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 0 ∈ ℤ) |
| 157 | 126 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑁 ∈ ℤ) |
| 158 | | elfzelz 13564 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℤ) |
| 159 | 158 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℤ) |
| 160 | | elfzle1 13567 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝐽) → 0 ≤ 𝑘) |
| 161 | 160 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 0 ≤ 𝑘) |
| 162 | 159 | zred 12722 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℝ) |
| 163 | 45 | nn0red 12588 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ ℝ) |
| 164 | 163 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ∈ ℝ) |
| 165 | 157 | zred 12722 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑁 ∈ ℝ) |
| 166 | | elfzle2 13568 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ≤ 𝐽) |
| 167 | 166 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ≤ 𝐽) |
| 168 | 128 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ≤ 𝑁) |
| 169 | 162, 164,
165, 167, 168 | letrd 11418 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ≤ 𝑁) |
| 170 | 156, 157,
159, 161, 169 | elfzd 13555 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ (0...𝑁)) |
| 171 | | rspa 3248 |
. . . . . 6
⊢
((∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
| 172 | 155, 170,
171 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
| 173 | 172 | feq1d 6720 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))):𝑋⟶ℂ)) |
| 174 | 153, 173 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘):𝑋⟶ℂ) |
| 175 | 23 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑍 ∈ 𝑇) |
| 176 | | simpl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝜑) |
| 177 | 176, 175,
170 | 3jca 1129 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁))) |
| 178 | 26 | 3anbi2d 1443 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)))) |
| 179 | 19 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑡 = 𝑍 → (𝑆 D𝑛 (𝐻‘𝑡)) = (𝑆 D𝑛 (𝐻‘𝑍))) |
| 180 | 179 | fveq1d 6908 |
. . . . . . . 8
⊢ (𝑡 = 𝑍 → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘)) |
| 181 | 180 | feq1d 6720 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ)) |
| 182 | 178, 181 | imbi12d 344 |
. . . . . 6
⊢ (𝑡 = 𝑍 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ))) |
| 183 | | eleq1 2829 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝑗 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...𝑁))) |
| 184 | 183 | 3anbi3d 1444 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)))) |
| 185 | | fveq2 6906 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘)) |
| 186 | 185 | feq1d 6720 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ)) |
| 187 | 184, 186 | imbi12d 344 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ))) |
| 188 | 187, 145 | chvarvv 1998 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ) |
| 189 | 182, 188 | vtoclg 3554 |
. . . . 5
⊢ (𝑍 ∈ 𝑇 → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ)) |
| 190 | 175, 177,
189 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ) |
| 191 | 32 | feqmptd 6977 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻‘𝑍) = (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥))) |
| 192 | 191 | eqcomd 2743 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) = (𝐻‘𝑍)) |
| 193 | 192 | oveq2d 7447 |
. . . . . . 7
⊢ (𝜑 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥))) = (𝑆 D𝑛 (𝐻‘𝑍))) |
| 194 | 193 | fveq1d 6908 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘)) |
| 195 | 194 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘)) |
| 196 | 195 | feq1d 6720 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ)) |
| 197 | 190, 196 | mpbird 257 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘):𝑋⟶ℂ) |
| 198 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝐻‘𝑡)‘𝑦) = ((𝐻‘𝑡)‘𝑥)) |
| 199 | 198 | prodeq2ad 45607 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦) = ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) |
| 200 | 199 | cbvmptv 5255 |
. . . . . 6
⊢ (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) |
| 201 | 200 | oveq2i 7442 |
. . . . 5
⊢ (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥))) |
| 202 | 201 | fveq1i 6907 |
. . . 4
⊢ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) |
| 203 | 202 | mpteq2i 5247 |
. . 3
⊢ (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘)) = (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘)) |
| 204 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝐻‘𝑍)‘𝑦) = ((𝐻‘𝑍)‘𝑥)) |
| 205 | 204 | cbvmptv 5255 |
. . . . . 6
⊢ (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)) = (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) |
| 206 | 205 | oveq2i 7442 |
. . . . 5
⊢ (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥))) |
| 207 | 206 | fveq1i 6907 |
. . . 4
⊢ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘) |
| 208 | 207 | mpteq2i 5247 |
. . 3
⊢ (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘)) |
| 209 | 40, 41, 42, 35, 45, 46, 47, 174, 197, 203, 208 | dvnmul 45958 |
. 2
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))))‘𝐽) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))))) |
| 210 | 202 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘)) |
| 211 | 154 | r19.21bi 3251 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
| 212 | 176, 170,
211 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
| 213 | 210, 212 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
| 214 | 213 | mpteq2dva 5242 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘)) = (𝑘 ∈ (0...𝐽) ↦ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
| 215 | | mptexg 7241 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∈ V) |
| 216 | 41, 215 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∈ V) |
| 217 | 216 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∈ V) |
| 218 | 214, 217 | fvmpt2d 7029 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
| 219 | 218 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
| 220 | 219 | fveq1d 6908 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))‘𝑥)) |
| 221 | 34 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → 𝑥 ∈ 𝑋) |
| 222 | 152 | an32s 652 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
| 223 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 224 | 223 | fvmpt2 7027 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑋 ∧ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))‘𝑥) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 225 | 221, 222,
224 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))‘𝑥) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 226 | 220, 225 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 227 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗)) |
| 228 | 227 | cbvmptv 5255 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗)) |
| 229 | 228 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗))) |
| 230 | 206, 193 | eqtrid 2789 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦))) = (𝑆 D𝑛 (𝐻‘𝑍))) |
| 231 | 230 | fveq1d 6908 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗)) |
| 232 | 231 | mpteq2dv 5244 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗))) |
| 233 | 229, 232 | eqtrd 2777 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗))) |
| 234 | 233 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗))) |
| 235 | | fveq2 6906 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝐽 − 𝑘) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
| 236 | 235 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑗 = (𝐽 − 𝑘)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
| 237 | | 0zd 12625 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → 0 ∈ ℤ) |
| 238 | | elfzel2 13562 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ ℤ) |
| 239 | 238, 158 | zsubcld 12727 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (𝐽 − 𝑘) ∈ ℤ) |
| 240 | 237, 238,
239 | 3jca 1129 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → (0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ)) |
| 241 | 238 | zred 12722 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ ℝ) |
| 242 | 75 | nn0red 12588 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℝ) |
| 243 | 241, 242 | subge0d 11853 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (0 ≤ (𝐽 − 𝑘) ↔ 𝑘 ≤ 𝐽)) |
| 244 | 166, 243 | mpbird 257 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → 0 ≤ (𝐽 − 𝑘)) |
| 245 | 241, 242 | subge02d 11855 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (0 ≤ 𝑘 ↔ (𝐽 − 𝑘) ≤ 𝐽)) |
| 246 | 160, 245 | mpbid 232 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → (𝐽 − 𝑘) ≤ 𝐽) |
| 247 | 240, 244,
246 | jca32 515 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝐽) → ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ) ∧ (0 ≤ (𝐽 − 𝑘) ∧ (𝐽 − 𝑘) ≤ 𝐽))) |
| 248 | 247 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ) ∧ (0 ≤ (𝐽 − 𝑘) ∧ (𝐽 − 𝑘) ≤ 𝐽))) |
| 249 | | elfz2 13554 |
. . . . . . . . . . . 12
⊢ ((𝐽 − 𝑘) ∈ (0...𝐽) ↔ ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ) ∧ (0 ≤ (𝐽 − 𝑘) ∧ (𝐽 − 𝑘) ≤ 𝐽))) |
| 250 | 248, 249 | sylibr 234 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐽 − 𝑘) ∈ (0...𝐽)) |
| 251 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)) ∈ V |
| 252 | 251 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)) ∈ V) |
| 253 | 234, 236,
250, 252 | fvmptd 7023 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘)) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
| 254 | 253 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘)) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
| 255 | 254 | fveq1d 6908 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) |
| 256 | 226, 255 | oveq12d 7449 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥)) = (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) |
| 257 | 256 | oveq2d 7447 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = ((𝐽C𝑘) · (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
| 258 | 88 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ∈ Fin) |
| 259 | | ovex 7464 |
. . . . . . . . . . . 12
⊢ (𝐽 − 𝑘) ∈ V |
| 260 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 − 𝑘) → (𝑗 ∈ (0...𝐽) ↔ (𝐽 − 𝑘) ∈ (0...𝐽))) |
| 261 | 260 | anbi2d 630 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − 𝑘) → ((𝜑 ∧ 𝑗 ∈ (0...𝐽)) ↔ (𝜑 ∧ (𝐽 − 𝑘) ∈ (0...𝐽)))) |
| 262 | 235 | feq1d 6720 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − 𝑘) → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ)) |
| 263 | 261, 262 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝐽 − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝐽 − 𝑘) ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ))) |
| 264 | | eleq1 2829 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝑘 ∈ (0...𝐽) ↔ 𝑗 ∈ (0...𝐽))) |
| 265 | 264 | anbi2d 630 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ↔ (𝜑 ∧ 𝑗 ∈ (0...𝐽)))) |
| 266 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗)) |
| 267 | 266 | feq1d 6720 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ)) |
| 268 | 265, 267 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ))) |
| 269 | 268, 190 | chvarvv 1998 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) |
| 270 | 259, 263,
269 | vtocl 3558 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐽 − 𝑘) ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ) |
| 271 | 176, 250,
270 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ) |
| 272 | 271 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ) |
| 273 | 272, 221 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥) ∈ ℂ) |
| 274 | | anass 468 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ↔ (𝜑 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋))) |
| 275 | | ancom 460 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋) ↔ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽))) |
| 276 | 275 | anbi2i 623 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋)) ↔ (𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽)))) |
| 277 | | anass 468 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ↔ (𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽)))) |
| 278 | 277 | bicomi 224 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽))) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽))) |
| 279 | 276, 278 | bitri 275 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋)) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽))) |
| 280 | 274, 279 | bitri 275 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽))) |
| 281 | 280 | anbi1i 624 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ↔ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) |
| 282 | 281 | imbi1i 349 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ)) |
| 283 | 151, 282 | mpbi 230 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
| 284 | 258, 273,
283 | fsummulc1 15821 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) |
| 285 | 284 | oveq2d 7447 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) = ((𝐽C𝑘) · Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
| 286 | 176, 45 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ∈
ℕ0) |
| 287 | 286, 159 | bccld 45327 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐽C𝑘) ∈
ℕ0) |
| 288 | 287 | nn0cnd 12589 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐽C𝑘) ∈ ℂ) |
| 289 | 288 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (𝐽C𝑘) ∈ ℂ) |
| 290 | 273 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥) ∈ ℂ) |
| 291 | 283, 290 | mulcld 11281 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) ∈ ℂ) |
| 292 | 258, 289,
291 | fsummulc2 15820 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
| 293 | 257, 285,
292 | 3eqtrd 2781 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
| 294 | 293 | sumeq2dv 15738 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝐽)Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
| 295 | | vex 3484 |
. . . . . . . 8
⊢ 𝑘 ∈ V |
| 296 | | vex 3484 |
. . . . . . . 8
⊢ 𝑐 ∈ V |
| 297 | 295, 296 | op1std 8024 |
. . . . . . 7
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (1st ‘𝑝) = 𝑘) |
| 298 | 297 | oveq2d 7447 |
. . . . . 6
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (𝐽C(1st ‘𝑝)) = (𝐽C𝑘)) |
| 299 | 297 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (!‘(1st
‘𝑝)) = (!‘𝑘)) |
| 300 | 295, 296 | op2ndd 8025 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (2nd ‘𝑝) = 𝑐) |
| 301 | 300 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((2nd ‘𝑝)‘𝑡) = (𝑐‘𝑡)) |
| 302 | 301 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (!‘((2nd
‘𝑝)‘𝑡)) = (!‘(𝑐‘𝑡))) |
| 303 | 302 | prodeq2ad 45607 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) = ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) |
| 304 | 299, 303 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
| 305 | 301 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))) |
| 306 | 305 | fveq1d 6908 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
| 307 | 306 | prodeq2ad 45607 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
| 308 | 304, 307 | oveq12d 7449 |
. . . . . . 7
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 309 | 297 | oveq2d 7447 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (𝐽 − (1st ‘𝑝)) = (𝐽 − 𝑘)) |
| 310 | 309 | fveq2d 6910 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
| 311 | 310 | fveq1d 6908 |
. . . . . . 7
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) |
| 312 | 308, 311 | oveq12d 7449 |
. . . . . 6
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)) = ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) |
| 313 | 298, 312 | oveq12d 7449 |
. . . . 5
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = ((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
| 314 | | fzfid 14014 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0...𝐽) ∈ Fin) |
| 315 | 289 | adantrr 717 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) → (𝐽C𝑘) ∈ ℂ) |
| 316 | 291 | anasss 466 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) → ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) ∈ ℂ) |
| 317 | 315, 316 | mulcld 11281 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) → ((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) ∈ ℂ) |
| 318 | 313, 314,
258, 317 | fsum2d 15807 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝐽)Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)))) |
| 319 | | ovex 7464 |
. . . . . . . . 9
⊢ (𝐽 − (𝑐‘𝑍)) ∈ V |
| 320 | 296 | resex 6047 |
. . . . . . . . 9
⊢ (𝑐 ↾ 𝑅) ∈ V |
| 321 | 319, 320 | op1std 8024 |
. . . . . . . 8
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (1st ‘𝑝) = (𝐽 − (𝑐‘𝑍))) |
| 322 | 321 | oveq2d 7447 |
. . . . . . 7
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (𝐽C(1st ‘𝑝)) = (𝐽C(𝐽 − (𝑐‘𝑍)))) |
| 323 | 321 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (!‘(1st
‘𝑝)) =
(!‘(𝐽 − (𝑐‘𝑍)))) |
| 324 | 319, 320 | op2ndd 8025 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (2nd ‘𝑝) = (𝑐 ↾ 𝑅)) |
| 325 | 324 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((2nd ‘𝑝)‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
| 326 | 325 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (!‘((2nd
‘𝑝)‘𝑡)) = (!‘((𝑐 ↾ 𝑅)‘𝑡))) |
| 327 | 326 | prodeq2ad 45607 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) = ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) |
| 328 | 323, 327 | oveq12d 7449 |
. . . . . . . . 9
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) = ((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡)))) |
| 329 | 325 | fveq2d 6910 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))) |
| 330 | 329 | fveq1d 6908 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) |
| 331 | 330 | prodeq2ad 45607 |
. . . . . . . . 9
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) |
| 332 | 328, 331 | oveq12d 7449 |
. . . . . . . 8
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥))) |
| 333 | 321 | oveq2d 7447 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (𝐽 − (1st ‘𝑝)) = (𝐽 − (𝐽 − (𝑐‘𝑍)))) |
| 334 | 333 | fveq2d 6910 |
. . . . . . . . 9
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))) |
| 335 | 334 | fveq1d 6908 |
. . . . . . . 8
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)) |
| 336 | 332, 335 | oveq12d 7449 |
. . . . . . 7
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)) = ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) |
| 337 | 322, 336 | oveq12d 7449 |
. . . . . 6
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = ((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)))) |
| 338 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m (𝑅 ∪ {𝑍}))) |
| 339 | | rabeq 3451 |
. . . . . . . . . . . . 13
⊢
(((0...𝑛)
↑m 𝑠) =
((0...𝑛) ↑m
(𝑅 ∪ {𝑍})) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
| 340 | 338, 339 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
| 341 | | sumeq1 15725 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡)) |
| 342 | 341 | eqeq1d 2739 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛)) |
| 343 | 342 | rabbidv 3444 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
| 344 | 340, 343 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
| 345 | 344 | mpteq2dv 5244 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛})) |
| 346 | 23 | snssd 4809 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑍} ⊆ 𝑇) |
| 347 | 4, 346 | unssd 4192 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ⊆ 𝑇) |
| 348 | 3, 347 | ssexd 5324 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ V) |
| 349 | | elpwg 4603 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∪ {𝑍}) ∈ V → ((𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇 ↔ (𝑅 ∪ {𝑍}) ⊆ 𝑇)) |
| 350 | 348, 349 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇 ↔ (𝑅 ∪ {𝑍}) ⊆ 𝑇)) |
| 351 | 347, 350 | mpbird 257 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇) |
| 352 | 63 | mptex 7243 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
(𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) ∈ V |
| 353 | 352 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) ∈ V) |
| 354 | 48, 345, 351, 353 | fvmptd3 7039 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶‘(𝑅 ∪ {𝑍})) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛})) |
| 355 | | oveq2 7439 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝐽 → (0...𝑛) = (0...𝐽)) |
| 356 | 355 | oveq1d 7446 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) = ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
| 357 | | rabeq 3451 |
. . . . . . . . . . . 12
⊢
(((0...𝑛)
↑m (𝑅 ∪
{𝑍})) = ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
| 358 | 356, 357 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
| 359 | | eqeq2 2749 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → (Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽)) |
| 360 | 359 | rabbidv 3444 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 361 | 358, 360 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 362 | 361 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 = 𝐽) → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 363 | | ovex 7464 |
. . . . . . . . . . 11
⊢
((0...𝐽)
↑m (𝑅 ∪
{𝑍})) ∈
V |
| 364 | 363 | rabex 5339 |
. . . . . . . . . 10
⊢ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ V |
| 365 | 364 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ V) |
| 366 | 354, 362,
45, 365 | fvmptd 7023 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 367 | | fzfid 14014 |
. . . . . . . . . 10
⊢ (𝜑 → (0...𝐽) ∈ Fin) |
| 368 | | snfi 9083 |
. . . . . . . . . . . 12
⊢ {𝑍} ∈ Fin |
| 369 | 368 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑍} ∈ Fin) |
| 370 | | unfi 9211 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑅 ∪ {𝑍}) ∈ Fin) |
| 371 | 6, 369, 370 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ Fin) |
| 372 | | mapfi 9388 |
. . . . . . . . . 10
⊢
(((0...𝐽) ∈ Fin
∧ (𝑅 ∪ {𝑍}) ∈ Fin) →
((0...𝐽) ↑m
(𝑅 ∪ {𝑍})) ∈ Fin) |
| 373 | 367, 371,
372 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∈ Fin) |
| 374 | | ssrab2 4080 |
. . . . . . . . . 10
⊢ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) |
| 375 | 374 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
| 376 | | ssfi 9213 |
. . . . . . . . 9
⊢
((((0...𝐽)
↑m (𝑅 ∪
{𝑍})) ∈ Fin ∧
{𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ Fin) |
| 377 | 373, 375,
376 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ Fin) |
| 378 | 366, 377 | eqeltrd 2841 |
. . . . . . 7
⊢ (𝜑 → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∈ Fin) |
| 379 | 378 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∈ Fin) |
| 380 | | dvnprodlem2.d |
. . . . . . . 8
⊢ 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
| 381 | 48, 45, 380, 3, 23, 10, 347 | dvnprodlem1 45961 |
. . . . . . 7
⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 382 | 381 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 383 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
| 384 | | opex 5469 |
. . . . . . . . 9
⊢
〈(𝐽 −
(𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V |
| 385 | 384 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V) |
| 386 | 380 | fvmpt2 7027 |
. . . . . . . 8
⊢ ((𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V) → (𝐷‘𝑐) = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
| 387 | 383, 385,
386 | syl2anc 584 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐷‘𝑐) = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
| 388 | 387 | adantlr 715 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐷‘𝑐) = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
| 389 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝐽 ∈
ℕ0) |
| 390 | | eliun 4995 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 391 | 390 | biimpi 216 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 392 | 391 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 393 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘𝜑 |
| 394 | | nfcv 2905 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝑝 |
| 395 | | nfiu1 5027 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
| 396 | 394, 395 | nfel 2920 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
| 397 | 393, 396 | nfan 1899 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
| 398 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(1st ‘𝑝) ∈ (0...𝐽) |
| 399 | | xp1st 8046 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ {𝑘}) |
| 400 | | elsni 4643 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑝) ∈ {𝑘} → (1st ‘𝑝) = 𝑘) |
| 401 | 399, 400 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) = 𝑘) |
| 402 | 401 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) = 𝑘) |
| 403 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑘 ∈ (0...𝐽)) |
| 404 | 402, 403 | eqeltrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈ (0...𝐽)) |
| 405 | 404 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽))) |
| 406 | 405 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽)))) |
| 407 | 397, 398,
406 | rexlimd 3266 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽))) |
| 408 | 392, 407 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈ (0...𝐽)) |
| 409 | | elfzelz 13564 |
. . . . . . . . . . 11
⊢
((1st ‘𝑝) ∈ (0...𝐽) → (1st ‘𝑝) ∈
ℤ) |
| 410 | 408, 409 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈
ℤ) |
| 411 | 389, 410 | bccld 45327 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽C(1st ‘𝑝)) ∈
ℕ0) |
| 412 | 411 | nn0cnd 12589 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽C(1st ‘𝑝)) ∈ ℂ) |
| 413 | 412 | adantlr 715 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽C(1st ‘𝑝)) ∈ ℂ) |
| 414 | | elfznn0 13660 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑝) ∈ (0...𝐽) → (1st ‘𝑝) ∈
ℕ0) |
| 415 | 408, 414 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈
ℕ0) |
| 416 | 415 | faccld 14323 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (!‘(1st
‘𝑝)) ∈
ℕ) |
| 417 | 416 | nncnd 12282 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (!‘(1st
‘𝑝)) ∈
ℂ) |
| 418 | 417 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (!‘(1st
‘𝑝)) ∈
ℂ) |
| 419 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑅 ∈ Fin) |
| 420 | | nfv 1914 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(2nd ‘𝑝):𝑅⟶(0...𝐽) |
| 421 | 84, 82 | eqsstrd 4018 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ⊆ ((0...𝑘) ↑m 𝑅)) |
| 422 | | ovex 7464 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(0...𝐽) ∈
V |
| 423 | 422 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝐽) → (0...𝐽) ∈ V) |
| 424 | | mapss 8929 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((0...𝐽) ∈ V
∧ (0...𝑘) ⊆
(0...𝐽)) → ((0...𝑘) ↑m 𝑅) ⊆ ((0...𝐽) ↑m 𝑅)) |
| 425 | 423, 122,
424 | syl2anc 584 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝐽) → ((0...𝑘) ↑m 𝑅) ⊆ ((0...𝐽) ↑m 𝑅)) |
| 426 | 425 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((0...𝑘) ↑m 𝑅) ⊆ ((0...𝐽) ↑m 𝑅)) |
| 427 | 421, 426 | sstrd 3994 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ⊆ ((0...𝐽) ↑m 𝑅)) |
| 428 | 427 | 3adant3 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝐶‘𝑅)‘𝑘) ⊆ ((0...𝐽) ↑m 𝑅)) |
| 429 | | xp2nd 8047 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝) ∈ ((𝐶‘𝑅)‘𝑘)) |
| 430 | 429 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ ((𝐶‘𝑅)‘𝑘)) |
| 431 | 428, 430 | sseldd 3984 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ ((0...𝐽) ↑m 𝑅)) |
| 432 | | elmapi 8889 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑝) ∈ ((0...𝐽) ↑m 𝑅) → (2nd ‘𝑝):𝑅⟶(0...𝐽)) |
| 433 | 431, 432 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝):𝑅⟶(0...𝐽)) |
| 434 | 433 | 3exp 1120 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝):𝑅⟶(0...𝐽)))) |
| 435 | 434 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝):𝑅⟶(0...𝐽)))) |
| 436 | 397, 420,
435 | rexlimd 3266 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝):𝑅⟶(0...𝐽))) |
| 437 | 392, 436 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝):𝑅⟶(0...𝐽)) |
| 438 | 437 | ffvelcdmda 7104 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽)) |
| 439 | | elfznn0 13660 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → ((2nd ‘𝑝)‘𝑡) ∈
ℕ0) |
| 440 | 439 | faccld 14323 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℕ) |
| 441 | 440 | nncnd 12282 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℂ) |
| 442 | 438, 441 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℂ) |
| 443 | 419, 442 | fprodcl 15988 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ∈ ℂ) |
| 444 | 443 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ∈ ℂ) |
| 445 | 438, 440 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℕ) |
| 446 | | nnne0 12300 |
. . . . . . . . . . . . 13
⊢
((!‘((2nd ‘𝑝)‘𝑡)) ∈ ℕ →
(!‘((2nd ‘𝑝)‘𝑡)) ≠ 0) |
| 447 | 445, 446 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (!‘((2nd
‘𝑝)‘𝑡)) ≠ 0) |
| 448 | 419, 442,
447 | fprodn0 16015 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ≠ 0) |
| 449 | 448 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ≠ 0) |
| 450 | 418, 444,
449 | divcld 12043 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) ∈ ℂ) |
| 451 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑅 ∈ Fin) |
| 452 | | simpll 767 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 𝜑) |
| 453 | 452, 13 | sylancom 588 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
| 454 | 452, 133 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (0...𝐽) ⊆ (0...𝑁)) |
| 455 | 454, 438 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)) |
| 456 | 452, 453,
455 | 3jca 1129 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁))) |
| 457 | | eleq1 2829 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → (𝑗 ∈ (0...𝑁) ↔ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁))) |
| 458 | 457 | 3anbi3d 1444 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)))) |
| 459 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))) |
| 460 | 459 | feq1d 6720 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ)) |
| 461 | 458, 460 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ))) |
| 462 | 461, 145 | vtoclg 3554 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ)) |
| 463 | 438, 456,
462 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ) |
| 464 | 463 | adantllr 719 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ) |
| 465 | 17 | adantlr 715 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
| 466 | 464, 465 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) ∈ ℂ) |
| 467 | 451, 466 | fprodcl 15988 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) ∈ ℂ) |
| 468 | 450, 467 | mulcld 11281 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) ∈ ℂ) |
| 469 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(𝐽 − (1st
‘𝑝)) ∈
(0...𝐽) |
| 470 | | simp1 1137 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝜑) |
| 471 | 404 | 3adant1 1131 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈ (0...𝐽)) |
| 472 | | fznn0sub2 13675 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑝) ∈ (0...𝐽) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
| 473 | 472 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (1st
‘𝑝) ∈ (0...𝐽)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
| 474 | 470, 471,
473 | syl2anc 584 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
| 475 | 474 | 3exp 1120 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)))) |
| 476 | 475 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)))) |
| 477 | 397, 469,
476 | rexlimd 3266 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽))) |
| 478 | 392, 477 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
| 479 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝜑) |
| 480 | 479, 23 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑍 ∈ 𝑇) |
| 481 | 479, 133 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (0...𝐽) ⊆ (0...𝑁)) |
| 482 | 481, 478 | sseldd 3984 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)) |
| 483 | 479, 480,
482 | 3jca 1129 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁))) |
| 484 | | eleq1 2829 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → (𝑗 ∈ (0...𝑁) ↔ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁))) |
| 485 | 484 | 3anbi3d 1444 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)))) |
| 486 | | fveq2 6906 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))) |
| 487 | 486 | feq1d 6720 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ)) |
| 488 | 485, 487 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → (((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ))) |
| 489 | | simp2 1138 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → 𝑍 ∈ 𝑇) |
| 490 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁))) |
| 491 | 26 | 3anbi2d 1443 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑍 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)))) |
| 492 | 179 | fveq1d 6908 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑍 → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗)) |
| 493 | 492 | feq1d 6720 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑍 → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ)) |
| 494 | 491, 493 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑍 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ))) |
| 495 | 494, 145 | vtoclg 3554 |
. . . . . . . . . . . . 13
⊢ (𝑍 ∈ 𝑇 → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ)) |
| 496 | 489, 490,
495 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) |
| 497 | 488, 496 | vtoclg 3554 |
. . . . . . . . . . 11
⊢ ((𝐽 − (1st
‘𝑝)) ∈
(0...𝐽) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ)) |
| 498 | 478, 483,
497 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ) |
| 499 | 498 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ) |
| 500 | 34 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑥 ∈ 𝑋) |
| 501 | 499, 500 | ffvelcdmd 7105 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥) ∈ ℂ) |
| 502 | 468, 501 | mulcld 11281 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)) ∈ ℂ) |
| 503 | 413, 502 | mulcld 11281 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) ∈ ℂ) |
| 504 | 337, 379,
382, 388, 503 | fsumf1o 15759 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)))) |
| 505 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝜑) |
| 506 | 366 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 507 | 383, 506 | eleqtrd 2843 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
| 508 | 374 | sseli 3979 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} → 𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
| 509 | 507, 508 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
| 510 | | elmapi 8889 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
| 511 | 509, 510 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
| 512 | | snidg 4660 |
. . . . . . . . . . . . . . . 16
⊢ (𝑍 ∈ 𝑇 → 𝑍 ∈ {𝑍}) |
| 513 | 23, 512 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
| 514 | | elun2 4183 |
. . . . . . . . . . . . . . 15
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
| 515 | 513, 514 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
| 516 | 515 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
| 517 | 511, 516 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ (0...𝐽)) |
| 518 | | 0zd 12625 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 0 ∈ ℤ) |
| 519 | 124 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 𝐽 ∈ ℤ) |
| 520 | | fzssz 13566 |
. . . . . . . . . . . . . . . 16
⊢
(0...𝐽) ⊆
ℤ |
| 521 | 520 | sseli 3979 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → (𝑐‘𝑍) ∈ ℤ) |
| 522 | 521 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝑐‘𝑍) ∈ ℤ) |
| 523 | 519, 522 | zsubcld 12727 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ ℤ) |
| 524 | | elfzle2 13568 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → (𝑐‘𝑍) ≤ 𝐽) |
| 525 | 524 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝑐‘𝑍) ≤ 𝐽) |
| 526 | 163 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 𝐽 ∈ ℝ) |
| 527 | 522 | zred 12722 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝑐‘𝑍) ∈ ℝ) |
| 528 | 526, 527 | subge0d 11853 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (0 ≤ (𝐽 − (𝑐‘𝑍)) ↔ (𝑐‘𝑍) ≤ 𝐽)) |
| 529 | 525, 528 | mpbird 257 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 0 ≤ (𝐽 − (𝑐‘𝑍))) |
| 530 | | elfzle1 13567 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → 0 ≤ (𝑐‘𝑍)) |
| 531 | 530 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 0 ≤ (𝑐‘𝑍)) |
| 532 | 526, 527 | subge02d 11855 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (0 ≤ (𝑐‘𝑍) ↔ (𝐽 − (𝑐‘𝑍)) ≤ 𝐽)) |
| 533 | 531, 532 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝐽 − (𝑐‘𝑍)) ≤ 𝐽) |
| 534 | 518, 519,
523, 529, 533 | elfzd 13555 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽)) |
| 535 | 505, 517,
534 | syl2anc 584 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽)) |
| 536 | | bcval2 14344 |
. . . . . . . . . . 11
⊢ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) → (𝐽C(𝐽 − (𝑐‘𝑍))) = ((!‘𝐽) / ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
| 537 | 535, 536 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽C(𝐽 − (𝑐‘𝑍))) = ((!‘𝐽) / ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
| 538 | 163 | recnd 11289 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈ ℂ) |
| 539 | 538 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐽 ∈ ℂ) |
| 540 | | zsscn 12621 |
. . . . . . . . . . . . . . . . 17
⊢ ℤ
⊆ ℂ |
| 541 | 520, 540 | sstri 3993 |
. . . . . . . . . . . . . . . 16
⊢
(0...𝐽) ⊆
ℂ |
| 542 | 541 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0...𝐽) ⊆ ℂ) |
| 543 | 542, 517 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ ℂ) |
| 544 | 539, 543 | nncand 11625 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝐽 − (𝑐‘𝑍))) = (𝑐‘𝑍)) |
| 545 | 544 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) = (!‘(𝑐‘𝑍))) |
| 546 | 545 | oveq1d 7446 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍)))) = ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍))))) |
| 547 | 546 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘𝐽) / ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍))))) = ((!‘𝐽) / ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
| 548 | 45 | faccld 14323 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (!‘𝐽) ∈ ℕ) |
| 549 | 548 | nncnd 12282 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (!‘𝐽) ∈ ℂ) |
| 550 | 549 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘𝐽) ∈ ℂ) |
| 551 | | elfznn0 13660 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → (𝑐‘𝑍) ∈
ℕ0) |
| 552 | 517, 551 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈
ℕ0) |
| 553 | 552 | faccld 14323 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ∈ ℕ) |
| 554 | 553 | nncnd 12282 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ∈ ℂ) |
| 555 | | elfznn0 13660 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) → (𝐽 − (𝑐‘𝑍)) ∈
ℕ0) |
| 556 | 535, 555 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈
ℕ0) |
| 557 | 556 | faccld 14323 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ∈ ℕ) |
| 558 | 557 | nncnd 12282 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ∈ ℂ) |
| 559 | 553 | nnne0d 12316 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ≠ 0) |
| 560 | 557 | nnne0d 12316 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ≠ 0) |
| 561 | 550, 554,
558, 559, 560 | divdiv1d 12074 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍)))) = ((!‘𝐽) / ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
| 562 | 561 | eqcomd 2743 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘𝐽) / ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍))))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍))))) |
| 563 | 537, 547,
562 | 3eqtrd 2781 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽C(𝐽 − (𝑐‘𝑍))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍))))) |
| 564 | 563 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽C(𝐽 − (𝑐‘𝑍))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍))))) |
| 565 | | fvres 6925 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ 𝑅 → ((𝑐 ↾ 𝑅)‘𝑡) = (𝑐‘𝑡)) |
| 566 | 565 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝑅 → (!‘((𝑐 ↾ 𝑅)‘𝑡)) = (!‘(𝑐‘𝑡))) |
| 567 | 566 | prodeq2i 15954 |
. . . . . . . . . . . . . . 15
⊢
∏𝑡 ∈
𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡)) = ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) |
| 568 | 567 | oveq2i 7442 |
. . . . . . . . . . . . . 14
⊢
((!‘(𝐽 −
(𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) = ((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) |
| 569 | 565 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝑅 → ((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))) |
| 570 | 569 | fveq1d 6908 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝑅 → (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
| 571 | 570 | prodeq2i 15954 |
. . . . . . . . . . . . . 14
⊢
∏𝑡 ∈
𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) |
| 572 | 568, 571 | oveq12i 7443 |
. . . . . . . . . . . . 13
⊢
(((!‘(𝐽
− (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
| 573 | 572 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 574 | 573 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 575 | 558 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ∈ ℂ) |
| 576 | 505, 6 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ∈ Fin) |
| 577 | 75 | ssriv 3987 |
. . . . . . . . . . . . . . . . . 18
⊢
(0...𝐽) ⊆
ℕ0 |
| 578 | 577 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (0...𝐽) ⊆
ℕ0) |
| 579 | 511 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
| 580 | | elun1 4182 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ 𝑅 → 𝑡 ∈ (𝑅 ∪ {𝑍})) |
| 581 | 580 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ (𝑅 ∪ {𝑍})) |
| 582 | 579, 581 | ffvelcdmd 7105 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝐽)) |
| 583 | 578, 582 | sseldd 3984 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈
ℕ0) |
| 584 | 583 | faccld 14323 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℕ) |
| 585 | 584 | nncnd 12282 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℂ) |
| 586 | 576, 585 | fprodcl 15988 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℂ) |
| 587 | 586 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℂ) |
| 588 | 7 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ∈ Fin) |
| 589 | 505 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝜑) |
| 590 | 505, 13 | sylan 580 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
| 591 | 589, 133 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (0...𝐽) ⊆ (0...𝑁)) |
| 592 | 591, 582 | sseldd 3984 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑁)) |
| 593 | 589, 590,
592, 146 | syl3anc 1373 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
| 594 | 593 | adantllr 719 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
| 595 | 17 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
| 596 | 594, 595 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
| 597 | 588, 596 | fprodcl 15988 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
| 598 | 576, 584 | fprodnncl 15991 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℕ) |
| 599 | | nnne0 12300 |
. . . . . . . . . . . . . 14
⊢
(∏𝑡 ∈
𝑅 (!‘(𝑐‘𝑡)) ∈ ℕ → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
| 600 | 598, 599 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
| 601 | 600 | adantlr 715 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
| 602 | 575, 587,
597, 601 | div32d 12066 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
| 603 | 574, 602 | eqtrd 2777 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
| 604 | 544 | fveq2d 6910 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))) |
| 605 | 604 | fveq1d 6908 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) |
| 606 | 605 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) |
| 607 | 603, 606 | oveq12d 7449 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) |
| 608 | 597, 587,
601 | divcld 12043 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) ∈ ℂ) |
| 609 | 505, 23 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ 𝑇) |
| 610 | 505, 133 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0...𝐽) ⊆ (0...𝑁)) |
| 611 | 610, 517 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ (0...𝑁)) |
| 612 | 505, 609,
611 | 3jca 1129 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁))) |
| 613 | | eleq1 2829 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑐‘𝑍) → (𝑗 ∈ (0...𝑁) ↔ (𝑐‘𝑍) ∈ (0...𝑁))) |
| 614 | 613 | 3anbi3d 1444 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑐‘𝑍) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁)))) |
| 615 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑐‘𝑍) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))) |
| 616 | 615 | feq1d 6720 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑐‘𝑍) → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ)) |
| 617 | 614, 616 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑐‘𝑍) → (((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ))) |
| 618 | 617, 496 | vtoclg 3554 |
. . . . . . . . . . . . 13
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ)) |
| 619 | 517, 612,
618 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ) |
| 620 | 619 | adantlr 715 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ) |
| 621 | 34 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑥 ∈ 𝑋) |
| 622 | 620, 621 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥) ∈ ℂ) |
| 623 | 575, 608,
622 | mulassd 11284 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) |
| 624 | 607, 623 | eqtrd 2777 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) |
| 625 | 564, 624 | oveq12d 7449 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) = ((((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍)))) · ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))))) |
| 626 | 549 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘𝐽) ∈ ℂ) |
| 627 | 554 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ∈ ℂ) |
| 628 | 559 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ≠ 0) |
| 629 | 626, 627,
628 | divcld 12043 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘𝐽) / (!‘(𝑐‘𝑍))) ∈ ℂ) |
| 630 | 608, 622 | mulcld 11281 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) ∈ ℂ) |
| 631 | 560 | adantlr 715 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ≠ 0) |
| 632 | 629, 575,
630, 631 | dmmcand 45325 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍)))) · ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) |
| 633 | 597, 622,
587, 601 | div23d 12080 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) |
| 634 | 633 | eqcomd 2743 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
| 635 | | nfv 1914 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
| 636 | | nfcv 2905 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡(((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥) |
| 637 | 609 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ 𝑇) |
| 638 | 11 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ¬ 𝑍 ∈ 𝑅) |
| 639 | | fveq2 6906 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑍 → (𝑐‘𝑡) = (𝑐‘𝑍)) |
| 640 | 179, 639 | fveq12d 6913 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑍 → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))) |
| 641 | 640 | fveq1d 6908 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑍 → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) |
| 642 | 635, 636,
588, 637, 638, 596, 641, 622 | fprodsplitsn 16025 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) |
| 643 | 642 | eqcomd 2743 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
| 644 | 643 | oveq1d 7446 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
| 645 | 634, 644 | eqtrd 2777 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
| 646 | 645 | oveq2d 7447 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) · (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
| 647 | 588, 368,
370 | sylancl 586 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑅 ∪ {𝑍}) ∈ Fin) |
| 648 | 505 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝜑) |
| 649 | 347 | sselda 3983 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝑡 ∈ 𝑇) |
| 650 | 649 | adantlr 715 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝑡 ∈ 𝑇) |
| 651 | 511, 610 | fssd 6753 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝑁)) |
| 652 | 651 | ffvelcdmda 7104 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑐‘𝑡) ∈ (0...𝑁)) |
| 653 | 648, 650,
652, 146 | syl3anc 1373 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
| 654 | 653 | adantllr 719 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
| 655 | 621 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝑥 ∈ 𝑋) |
| 656 | 654, 655 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
| 657 | 647, 656 | fprodcl 15988 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
| 658 | 626, 627,
657, 587, 628, 601 | divmuldivd 12084 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) · (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
| 659 | 554, 586 | mulcomd 11282 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = (∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) · (!‘(𝑐‘𝑍)))) |
| 660 | | nfv 1914 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
| 661 | | nfcv 2905 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(!‘(𝑐‘𝑍)) |
| 662 | 505, 10 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ¬ 𝑍 ∈ 𝑅) |
| 663 | 639 | fveq2d 6910 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑍 → (!‘(𝑐‘𝑡)) = (!‘(𝑐‘𝑍))) |
| 664 | 660, 661,
576, 609, 662, 585, 663, 554 | fprodsplitsn 16025 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) = (∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) · (!‘(𝑐‘𝑍)))) |
| 665 | 664 | eqcomd 2743 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) · (!‘(𝑐‘𝑍))) = ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) |
| 666 | 659, 665 | eqtrd 2777 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) |
| 667 | 666 | oveq2d 7447 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)))) |
| 668 | 667 | adantlr 715 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)))) |
| 669 | 505, 371 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑅 ∪ {𝑍}) ∈ Fin) |
| 670 | 577 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (0...𝐽) ⊆
ℕ0) |
| 671 | 511 | ffvelcdmda 7104 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑐‘𝑡) ∈ (0...𝐽)) |
| 672 | 670, 671 | sseldd 3984 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑐‘𝑡) ∈
ℕ0) |
| 673 | 672 | faccld 14323 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (!‘(𝑐‘𝑡)) ∈ ℕ) |
| 674 | 673 | nncnd 12282 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (!‘(𝑐‘𝑡)) ∈ ℂ) |
| 675 | 669, 674 | fprodcl 15988 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ∈ ℂ) |
| 676 | 675 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ∈ ℂ) |
| 677 | 673 | nnne0d 12316 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (!‘(𝑐‘𝑡)) ≠ 0) |
| 678 | 669, 674,
677 | fprodn0 16015 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ≠ 0) |
| 679 | 678 | adantlr 715 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ≠ 0) |
| 680 | 626, 657,
676, 679 | div23d 12080 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 681 | | eqidd 2738 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 682 | 668, 680,
681 | 3eqtrd 2781 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 683 | 646, 658,
682 | 3eqtrd 2781 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 684 | 625, 632,
683 | 3eqtrd 2781 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 685 | 684 | sumeq2dv 15738 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 686 | 504, 685 | eqtrd 2777 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 687 | 294, 318,
686 | 3eqtrd 2781 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
| 688 | 687 | mpteq2dva 5242 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
| 689 | 39, 209, 688 | 3eqtrd 2781 |
1
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥)))‘𝐽) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |