Step | Hyp | Ref
| Expression |
1 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑡(𝜑 ∧ 𝑥 ∈ 𝑋) |
2 | | nfcv 2906 |
. . . . . 6
⊢
Ⅎ𝑡((𝐻‘𝑍)‘𝑥) |
3 | | dvnprodlem2.t |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ Fin) |
4 | | dvnprodlem2.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ⊆ 𝑇) |
5 | | ssfi 8918 |
. . . . . . . 8
⊢ ((𝑇 ∈ Fin ∧ 𝑅 ⊆ 𝑇) → 𝑅 ∈ Fin) |
6 | 3, 4, 5 | syl2anc 583 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Fin) |
7 | 6 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ Fin) |
8 | | dvnprodlem2.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (𝑇 ∖ 𝑅)) |
9 | 8 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑍 ∈ (𝑇 ∖ 𝑅)) |
10 | 8 | eldifbd 3896 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑅) |
11 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ 𝑍 ∈ 𝑅) |
12 | | simpl 482 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑅) → 𝜑) |
13 | 4 | sselda 3917 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
14 | | dvnprodlem2.h |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) |
15 | 12, 13, 14 | syl2anc 583 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑅) → (𝐻‘𝑡):𝑋⟶ℂ) |
16 | 15 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑅) → (𝐻‘𝑡):𝑋⟶ℂ) |
17 | | simplr 765 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
18 | 16, 17 | ffvelrnd 6944 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑅) → ((𝐻‘𝑡)‘𝑥) ∈ ℂ) |
19 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → (𝐻‘𝑡) = (𝐻‘𝑍)) |
20 | 19 | fveq1d 6758 |
. . . . . 6
⊢ (𝑡 = 𝑍 → ((𝐻‘𝑡)‘𝑥) = ((𝐻‘𝑍)‘𝑥)) |
21 | | id 22 |
. . . . . . . . 9
⊢ (𝜑 → 𝜑) |
22 | | eldifi 4057 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝑇 ∖ 𝑅) → 𝑍 ∈ 𝑇) |
23 | 8, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑇) |
24 | | simpr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → 𝑍 ∈ 𝑇) |
25 | | id 22 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝜑 ∧ 𝑍 ∈ 𝑇)) |
26 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑍 → (𝑡 ∈ 𝑇 ↔ 𝑍 ∈ 𝑇)) |
27 | 26 | anbi2d 628 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑍 → ((𝜑 ∧ 𝑡 ∈ 𝑇) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇))) |
28 | 19 | feq1d 6569 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑍 → ((𝐻‘𝑡):𝑋⟶ℂ ↔ (𝐻‘𝑍):𝑋⟶ℂ)) |
29 | 27, 28 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑍 → (((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝐻‘𝑍):𝑋⟶ℂ))) |
30 | 29, 14 | vtoclg 3495 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑇 → ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝐻‘𝑍):𝑋⟶ℂ)) |
31 | 24, 25, 30 | sylc 65 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝐻‘𝑍):𝑋⟶ℂ) |
32 | 21, 23, 31 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘𝑍):𝑋⟶ℂ) |
33 | 32 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐻‘𝑍):𝑋⟶ℂ) |
34 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
35 | 33, 34 | ffvelrnd 6944 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐻‘𝑍)‘𝑥) ∈ ℂ) |
36 | 1, 2, 7, 9, 11, 18, 20, 35 | fprodsplitsn 15627 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥) = (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))) |
37 | 36 | mpteq2dva 5170 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥)))) |
38 | 37 | oveq2d 7271 |
. . 3
⊢ (𝜑 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))))) |
39 | 38 | fveq1d 6758 |
. 2
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥)))‘𝐽) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))))‘𝐽)) |
40 | | dvnprodlem2.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
41 | | dvnprodlem2.x |
. . 3
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
42 | 1, 7, 18 | fprodclf 15630 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) ∈ ℂ) |
43 | | dvnprodlem2.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (0...𝑁)) |
44 | | elfznn0 13278 |
. . . 4
⊢ (𝐽 ∈ (0...𝑁) → 𝐽 ∈
ℕ0) |
45 | 43, 44 | syl 17 |
. . 3
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
46 | | eqid 2738 |
. . 3
⊢ (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) |
47 | | eqid 2738 |
. . 3
⊢ (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) |
48 | | dvnprodlem2.c |
. . . . . . . . . 10
⊢ 𝐶 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) |
49 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑅 → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m 𝑅)) |
50 | | rabeq 3408 |
. . . . . . . . . . . . 13
⊢
(((0...𝑛)
↑m 𝑠) =
((0...𝑛) ↑m
𝑅) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
52 | | sumeq1 15328 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑅 → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ 𝑅 (𝑐‘𝑡)) |
53 | 52 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑅 → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛)) |
54 | 53 | rabbidv 3404 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
55 | 51, 54 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
56 | 55 | mpteq2dv 5172 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑅 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
57 | | ssexg 5242 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ⊆ 𝑇 ∧ 𝑇 ∈ Fin) → 𝑅 ∈ V) |
58 | 4, 3, 57 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ V) |
59 | | elpwg 4533 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ V → (𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇)) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇)) |
61 | 4, 60 | mpbird 256 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ 𝒫 𝑇) |
62 | 61 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑅 ∈ 𝒫 𝑇) |
63 | | nn0ex 12169 |
. . . . . . . . . . . 12
⊢
ℕ0 ∈ V |
64 | 63 | mptex 7081 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) ∈ V |
65 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) ∈ V) |
66 | 48, 56, 62, 65 | fvmptd3 6880 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐶‘𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
67 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (0...𝑛) = (0...𝑘)) |
68 | 67 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((0...𝑛) ↑m 𝑅) = ((0...𝑘) ↑m 𝑅)) |
69 | | rabeq 3408 |
. . . . . . . . . . . 12
⊢
(((0...𝑛)
↑m 𝑅) =
((0...𝑘) ↑m
𝑅) → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
71 | | eqeq2 2750 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘)) |
72 | 71 | rabbidv 3404 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
73 | 70, 72 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
74 | 73 | adantl 481 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑛 = 𝑘) → {𝑐 ∈ ((0...𝑛) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
75 | | elfznn0 13278 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℕ0) |
76 | 75 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℕ0) |
77 | | fzfid 13621 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...𝑘) ∈ Fin) |
78 | | mapfi 9045 |
. . . . . . . . . . . 12
⊢
(((0...𝑘) ∈ Fin
∧ 𝑅 ∈ Fin) →
((0...𝑘) ↑m
𝑅) ∈
Fin) |
79 | 77, 6, 78 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → ((0...𝑘) ↑m 𝑅) ∈ Fin) |
80 | 79 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((0...𝑘) ↑m 𝑅) ∈ Fin) |
81 | | ssrab2 4009 |
. . . . . . . . . . 11
⊢ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ⊆ ((0...𝑘) ↑m 𝑅) |
82 | 81 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ⊆ ((0...𝑘) ↑m 𝑅)) |
83 | 80, 82 | ssexd 5243 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ V) |
84 | 66, 74, 76, 83 | fvmptd 6864 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) = {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
85 | | ssfi 8918 |
. . . . . . . . . 10
⊢
((((0...𝑘)
↑m 𝑅)
∈ Fin ∧ {𝑐 ∈
((0...𝑘) ↑m
𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ⊆ ((0...𝑘) ↑m 𝑅)) → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ Fin) |
86 | 79, 81, 85 | sylancl 585 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ Fin) |
87 | 86 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ Fin) |
88 | 84, 87 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ∈ Fin) |
89 | 88 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑅)‘𝑘) ∈ Fin) |
90 | 75 | faccld 13926 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝐽) → (!‘𝑘) ∈ ℕ) |
91 | 90 | nncnd 11919 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝐽) → (!‘𝑘) ∈ ℂ) |
92 | 91 | ad2antlr 723 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (!‘𝑘) ∈ ℂ) |
93 | 6 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑅 ∈ Fin) |
94 | 93 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑅 ∈ Fin) |
95 | | elfznn0 13278 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ (0...𝑘) → 𝑧 ∈ ℕ0) |
96 | 95 | ssriv 3921 |
. . . . . . . . . . . . . 14
⊢
(0...𝑘) ⊆
ℕ0 |
97 | 96 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (0...𝑘) ⊆
ℕ0) |
98 | | simpr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) |
99 | 84 | eleq2d 2824 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑐 ∈ ((𝐶‘𝑅)‘𝑘) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘})) |
100 | 99 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (𝑐 ∈ ((𝐶‘𝑅)‘𝑘) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘})) |
101 | 98, 100 | mpbid 231 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
102 | 81 | sseli 3913 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑m 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} → 𝑐 ∈ ((0...𝑘) ↑m 𝑅)) |
103 | 101, 102 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐 ∈ ((0...𝑘) ↑m 𝑅)) |
104 | | elmapi 8595 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ ((0...𝑘) ↑m 𝑅) → 𝑐:𝑅⟶(0...𝑘)) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐:𝑅⟶(0...𝑘)) |
106 | 105 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑐:𝑅⟶(0...𝑘)) |
107 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑅) |
108 | 106, 107 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑘)) |
109 | 97, 108 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈
ℕ0) |
110 | 109 | faccld 13926 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℕ) |
111 | 110 | nncnd 11919 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℂ) |
112 | 94, 111 | fprodcl 15590 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℂ) |
113 | 110 | nnne0d 11953 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ≠ 0) |
114 | 94, 111, 113 | fprodn0 15617 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
115 | 92, 112, 114 | divcld 11681 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) ∈ ℂ) |
116 | 115 | adantlr 711 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) ∈ ℂ) |
117 | 94 | adantlr 711 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑅 ∈ Fin) |
118 | 21 | ad4antr 728 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝜑) |
119 | 118, 13 | sylancom 587 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
120 | | elfzuz3 13182 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ (ℤ≥‘𝑘)) |
121 | | fzss2 13225 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈
(ℤ≥‘𝑘) → (0...𝑘) ⊆ (0...𝐽)) |
122 | 120, 121 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (0...𝑘) ⊆ (0...𝐽)) |
123 | 122 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0...𝑘) ⊆ (0...𝐽)) |
124 | 45 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐽 ∈ ℤ) |
125 | | dvnprodlem2.n |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
126 | 125 | nn0zd 12353 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℤ) |
127 | | elfzle2 13189 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐽 ∈ (0...𝑁) → 𝐽 ≤ 𝑁) |
128 | 43, 127 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐽 ≤ 𝑁) |
129 | 124, 126,
128 | 3jca 1126 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ≤ 𝑁)) |
130 | | eluz2 12517 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘𝐽) ↔ (𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ≤ 𝑁)) |
131 | 129, 130 | sylibr 233 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐽)) |
132 | | fzss2 13225 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘𝐽) → (0...𝐽) ⊆ (0...𝑁)) |
133 | 131, 132 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0...𝐽) ⊆ (0...𝑁)) |
134 | 133 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0...𝐽) ⊆ (0...𝑁)) |
135 | 123, 134 | sstrd 3927 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0...𝑘) ⊆ (0...𝑁)) |
136 | 135 | ad2antrr 722 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (0...𝑘) ⊆ (0...𝑁)) |
137 | 136, 108 | sseldd 3918 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑁)) |
138 | 137 | adantllr 715 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑁)) |
139 | | fvex 6769 |
. . . . . . . . . . 11
⊢ (𝑐‘𝑡) ∈ V |
140 | | eleq1 2826 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑐‘𝑡) → (𝑗 ∈ (0...𝑁) ↔ (𝑐‘𝑡) ∈ (0...𝑁))) |
141 | 140 | 3anbi3d 1440 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑐‘𝑡) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑐‘𝑡) ∈ (0...𝑁)))) |
142 | | fveq2 6756 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑐‘𝑡) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))) |
143 | 142 | feq1d 6569 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑐‘𝑡) → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ)) |
144 | 141, 143 | imbi12d 344 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑐‘𝑡) → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑐‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ))) |
145 | | dvnprodlem2.dvnh |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) |
146 | 139, 144,
145 | vtocl 3488 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑐‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
147 | 118, 119,
138, 146 | syl3anc 1369 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
148 | | simpllr 772 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
149 | 147, 148 | ffvelrnd 6944 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
150 | 117, 149 | fprodcl 15590 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
151 | 116, 150 | mulcld 10926 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
152 | 89, 151 | fsumcl 15373 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) → Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
153 | 152 | fmpttd 6971 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))):𝑋⟶ℂ) |
154 | | dvnprodlem2.ind |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
155 | 154 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
156 | | 0zd 12261 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 0 ∈ ℤ) |
157 | 126 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑁 ∈ ℤ) |
158 | | elfzelz 13185 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℤ) |
159 | 158 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℤ) |
160 | | elfzle1 13188 |
. . . . . . . 8
⊢ (𝑘 ∈ (0...𝐽) → 0 ≤ 𝑘) |
161 | 160 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 0 ≤ 𝑘) |
162 | 159 | zred 12355 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℝ) |
163 | 45 | nn0red 12224 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ ℝ) |
164 | 163 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ∈ ℝ) |
165 | 157 | zred 12355 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑁 ∈ ℝ) |
166 | | elfzle2 13189 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ≤ 𝐽) |
167 | 166 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ≤ 𝐽) |
168 | 128 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ≤ 𝑁) |
169 | 162, 164,
165, 167, 168 | letrd 11062 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ≤ 𝑁) |
170 | 156, 157,
159, 161, 169 | elfzd 13176 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ (0...𝑁)) |
171 | | rspa 3130 |
. . . . . 6
⊢
((∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
172 | 155, 170,
171 | syl2anc 583 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
173 | 172 | feq1d 6569 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))):𝑋⟶ℂ)) |
174 | 153, 173 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘):𝑋⟶ℂ) |
175 | 23 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑍 ∈ 𝑇) |
176 | | simpl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝜑) |
177 | 176, 175,
170 | 3jca 1126 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁))) |
178 | 26 | 3anbi2d 1439 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)))) |
179 | 19 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑡 = 𝑍 → (𝑆 D𝑛 (𝐻‘𝑡)) = (𝑆 D𝑛 (𝐻‘𝑍))) |
180 | 179 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑡 = 𝑍 → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘)) |
181 | 180 | feq1d 6569 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ)) |
182 | 178, 181 | imbi12d 344 |
. . . . . 6
⊢ (𝑡 = 𝑍 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ))) |
183 | | eleq1 2826 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝑗 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...𝑁))) |
184 | 183 | 3anbi3d 1440 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)))) |
185 | | fveq2 6756 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘)) |
186 | 185 | feq1d 6569 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ)) |
187 | 184, 186 | imbi12d 344 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ))) |
188 | 187, 145 | chvarvv 2003 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ) |
189 | 182, 188 | vtoclg 3495 |
. . . . 5
⊢ (𝑍 ∈ 𝑇 → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ)) |
190 | 175, 177,
189 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ) |
191 | 32 | feqmptd 6819 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻‘𝑍) = (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥))) |
192 | 191 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) = (𝐻‘𝑍)) |
193 | 192 | oveq2d 7271 |
. . . . . . 7
⊢ (𝜑 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥))) = (𝑆 D𝑛 (𝐻‘𝑍))) |
194 | 193 | fveq1d 6758 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘)) |
195 | 194 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘)) |
196 | 195 | feq1d 6569 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ)) |
197 | 190, 196 | mpbird 256 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘):𝑋⟶ℂ) |
198 | | fveq2 6756 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝐻‘𝑡)‘𝑦) = ((𝐻‘𝑡)‘𝑥)) |
199 | 198 | prodeq2ad 43023 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦) = ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) |
200 | 199 | cbvmptv 5183 |
. . . . . 6
⊢ (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) |
201 | 200 | oveq2i 7266 |
. . . . 5
⊢ (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥))) |
202 | 201 | fveq1i 6757 |
. . . 4
⊢ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) |
203 | 202 | mpteq2i 5175 |
. . 3
⊢ (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘)) = (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘)) |
204 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝐻‘𝑍)‘𝑦) = ((𝐻‘𝑍)‘𝑥)) |
205 | 204 | cbvmptv 5183 |
. . . . . 6
⊢ (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)) = (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) |
206 | 205 | oveq2i 7266 |
. . . . 5
⊢ (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥))) |
207 | 206 | fveq1i 6757 |
. . . 4
⊢ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘) |
208 | 207 | mpteq2i 5175 |
. . 3
⊢ (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘)) |
209 | 40, 41, 42, 35, 45, 46, 47, 174, 197, 203, 208 | dvnmul 43374 |
. 2
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))))‘𝐽) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))))) |
210 | 202 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘)) |
211 | 154 | r19.21bi 3132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
212 | 176, 170,
211 | syl2anc 583 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
213 | 210, 212 | eqtrd 2778 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
214 | 213 | mpteq2dva 5170 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘)) = (𝑘 ∈ (0...𝐽) ↦ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
215 | | mptexg 7079 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∈ V) |
216 | 41, 215 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∈ V) |
217 | 216 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∈ V) |
218 | 214, 217 | fvmpt2d 6870 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
219 | 218 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
220 | 219 | fveq1d 6758 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))‘𝑥)) |
221 | 34 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → 𝑥 ∈ 𝑋) |
222 | 152 | an32s 648 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
223 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
224 | 223 | fvmpt2 6868 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑋 ∧ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))‘𝑥) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
225 | 221, 222,
224 | syl2anc 583 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))‘𝑥) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
226 | 220, 225 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
227 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗)) |
228 | 227 | cbvmptv 5183 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗)) |
229 | 228 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗))) |
230 | 206, 193 | syl5eq 2791 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦))) = (𝑆 D𝑛 (𝐻‘𝑍))) |
231 | 230 | fveq1d 6758 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗)) |
232 | 231 | mpteq2dv 5172 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗))) |
233 | 229, 232 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗))) |
234 | 233 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗))) |
235 | | fveq2 6756 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝐽 − 𝑘) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
236 | 235 | adantl 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑗 = (𝐽 − 𝑘)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
237 | | 0zd 12261 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → 0 ∈ ℤ) |
238 | | elfzel2 13183 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ ℤ) |
239 | 238, 158 | zsubcld 12360 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (𝐽 − 𝑘) ∈ ℤ) |
240 | 237, 238,
239 | 3jca 1126 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → (0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ)) |
241 | 238 | zred 12355 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ ℝ) |
242 | 75 | nn0red 12224 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℝ) |
243 | 241, 242 | subge0d 11495 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (0 ≤ (𝐽 − 𝑘) ↔ 𝑘 ≤ 𝐽)) |
244 | 166, 243 | mpbird 256 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → 0 ≤ (𝐽 − 𝑘)) |
245 | 241, 242 | subge02d 11497 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (0 ≤ 𝑘 ↔ (𝐽 − 𝑘) ≤ 𝐽)) |
246 | 160, 245 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → (𝐽 − 𝑘) ≤ 𝐽) |
247 | 240, 244,
246 | jca32 515 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝐽) → ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ) ∧ (0 ≤ (𝐽 − 𝑘) ∧ (𝐽 − 𝑘) ≤ 𝐽))) |
248 | 247 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ) ∧ (0 ≤ (𝐽 − 𝑘) ∧ (𝐽 − 𝑘) ≤ 𝐽))) |
249 | | elfz2 13175 |
. . . . . . . . . . . 12
⊢ ((𝐽 − 𝑘) ∈ (0...𝐽) ↔ ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ) ∧ (0 ≤ (𝐽 − 𝑘) ∧ (𝐽 − 𝑘) ≤ 𝐽))) |
250 | 248, 249 | sylibr 233 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐽 − 𝑘) ∈ (0...𝐽)) |
251 | | fvex 6769 |
. . . . . . . . . . . 12
⊢ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)) ∈ V |
252 | 251 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)) ∈ V) |
253 | 234, 236,
250, 252 | fvmptd 6864 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘)) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
254 | 253 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘)) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
255 | 254 | fveq1d 6758 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) |
256 | 226, 255 | oveq12d 7273 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥)) = (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) |
257 | 256 | oveq2d 7271 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = ((𝐽C𝑘) · (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
258 | 88 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ∈ Fin) |
259 | | ovex 7288 |
. . . . . . . . . . . 12
⊢ (𝐽 − 𝑘) ∈ V |
260 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 − 𝑘) → (𝑗 ∈ (0...𝐽) ↔ (𝐽 − 𝑘) ∈ (0...𝐽))) |
261 | 260 | anbi2d 628 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − 𝑘) → ((𝜑 ∧ 𝑗 ∈ (0...𝐽)) ↔ (𝜑 ∧ (𝐽 − 𝑘) ∈ (0...𝐽)))) |
262 | 235 | feq1d 6569 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − 𝑘) → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ)) |
263 | 261, 262 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝐽 − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝐽 − 𝑘) ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ))) |
264 | | eleq1 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝑘 ∈ (0...𝐽) ↔ 𝑗 ∈ (0...𝐽))) |
265 | 264 | anbi2d 628 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ↔ (𝜑 ∧ 𝑗 ∈ (0...𝐽)))) |
266 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗)) |
267 | 266 | feq1d 6569 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ)) |
268 | 265, 267 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ))) |
269 | 268, 190 | chvarvv 2003 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) |
270 | 259, 263,
269 | vtocl 3488 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐽 − 𝑘) ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ) |
271 | 176, 250,
270 | syl2anc 583 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ) |
272 | 271 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ) |
273 | 272, 221 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥) ∈ ℂ) |
274 | | anass 468 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ↔ (𝜑 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋))) |
275 | | ancom 460 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋) ↔ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽))) |
276 | 275 | anbi2i 622 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋)) ↔ (𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽)))) |
277 | | anass 468 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ↔ (𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽)))) |
278 | 277 | bicomi 223 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽))) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽))) |
279 | 276, 278 | bitri 274 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋)) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽))) |
280 | 274, 279 | bitri 274 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽))) |
281 | 280 | anbi1i 623 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ↔ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) |
282 | 281 | imbi1i 349 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ)) |
283 | 151, 282 | mpbi 229 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
284 | 258, 273,
283 | fsummulc1 15425 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) |
285 | 284 | oveq2d 7271 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) = ((𝐽C𝑘) · Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
286 | 176, 45 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ∈
ℕ0) |
287 | 286, 159 | bccld 42744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐽C𝑘) ∈
ℕ0) |
288 | 287 | nn0cnd 12225 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐽C𝑘) ∈ ℂ) |
289 | 288 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (𝐽C𝑘) ∈ ℂ) |
290 | 273 | adantr 480 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥) ∈ ℂ) |
291 | 283, 290 | mulcld 10926 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) ∈ ℂ) |
292 | 258, 289,
291 | fsummulc2 15424 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
293 | 257, 285,
292 | 3eqtrd 2782 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
294 | 293 | sumeq2dv 15343 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝐽)Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
295 | | vex 3426 |
. . . . . . . 8
⊢ 𝑘 ∈ V |
296 | | vex 3426 |
. . . . . . . 8
⊢ 𝑐 ∈ V |
297 | 295, 296 | op1std 7814 |
. . . . . . 7
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (1st ‘𝑝) = 𝑘) |
298 | 297 | oveq2d 7271 |
. . . . . 6
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (𝐽C(1st ‘𝑝)) = (𝐽C𝑘)) |
299 | 297 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (!‘(1st
‘𝑝)) = (!‘𝑘)) |
300 | 295, 296 | op2ndd 7815 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (2nd ‘𝑝) = 𝑐) |
301 | 300 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((2nd ‘𝑝)‘𝑡) = (𝑐‘𝑡)) |
302 | 301 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (!‘((2nd
‘𝑝)‘𝑡)) = (!‘(𝑐‘𝑡))) |
303 | 302 | prodeq2ad 43023 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) = ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) |
304 | 299, 303 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
305 | 301 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))) |
306 | 305 | fveq1d 6758 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
307 | 306 | prodeq2ad 43023 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
308 | 304, 307 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
309 | 297 | oveq2d 7271 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (𝐽 − (1st ‘𝑝)) = (𝐽 − 𝑘)) |
310 | 309 | fveq2d 6760 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
311 | 310 | fveq1d 6758 |
. . . . . . 7
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) |
312 | 308, 311 | oveq12d 7273 |
. . . . . 6
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)) = ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) |
313 | 298, 312 | oveq12d 7273 |
. . . . 5
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = ((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
314 | | fzfid 13621 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0...𝐽) ∈ Fin) |
315 | 289 | adantrr 713 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) → (𝐽C𝑘) ∈ ℂ) |
316 | 291 | anasss 466 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) → ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) ∈ ℂ) |
317 | 315, 316 | mulcld 10926 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) → ((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) ∈ ℂ) |
318 | 313, 314,
258, 317 | fsum2d 15411 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝐽)Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)))) |
319 | | ovex 7288 |
. . . . . . . . 9
⊢ (𝐽 − (𝑐‘𝑍)) ∈ V |
320 | 296 | resex 5928 |
. . . . . . . . 9
⊢ (𝑐 ↾ 𝑅) ∈ V |
321 | 319, 320 | op1std 7814 |
. . . . . . . 8
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (1st ‘𝑝) = (𝐽 − (𝑐‘𝑍))) |
322 | 321 | oveq2d 7271 |
. . . . . . 7
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (𝐽C(1st ‘𝑝)) = (𝐽C(𝐽 − (𝑐‘𝑍)))) |
323 | 321 | fveq2d 6760 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (!‘(1st
‘𝑝)) =
(!‘(𝐽 − (𝑐‘𝑍)))) |
324 | 319, 320 | op2ndd 7815 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (2nd ‘𝑝) = (𝑐 ↾ 𝑅)) |
325 | 324 | fveq1d 6758 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((2nd ‘𝑝)‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
326 | 325 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (!‘((2nd
‘𝑝)‘𝑡)) = (!‘((𝑐 ↾ 𝑅)‘𝑡))) |
327 | 326 | prodeq2ad 43023 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) = ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) |
328 | 323, 327 | oveq12d 7273 |
. . . . . . . . 9
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) = ((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡)))) |
329 | 325 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))) |
330 | 329 | fveq1d 6758 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) |
331 | 330 | prodeq2ad 43023 |
. . . . . . . . 9
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) |
332 | 328, 331 | oveq12d 7273 |
. . . . . . . 8
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥))) |
333 | 321 | oveq2d 7271 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (𝐽 − (1st ‘𝑝)) = (𝐽 − (𝐽 − (𝑐‘𝑍)))) |
334 | 333 | fveq2d 6760 |
. . . . . . . . 9
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))) |
335 | 334 | fveq1d 6758 |
. . . . . . . 8
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)) |
336 | 332, 335 | oveq12d 7273 |
. . . . . . 7
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)) = ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) |
337 | 322, 336 | oveq12d 7273 |
. . . . . 6
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = ((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)))) |
338 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → ((0...𝑛) ↑m 𝑠) = ((0...𝑛) ↑m (𝑅 ∪ {𝑍}))) |
339 | | rabeq 3408 |
. . . . . . . . . . . . 13
⊢
(((0...𝑛)
↑m 𝑠) =
((0...𝑛) ↑m
(𝑅 ∪ {𝑍})) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
340 | 338, 339 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
341 | | sumeq1 15328 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡)) |
342 | 341 | eqeq1d 2740 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛)) |
343 | 342 | rabbidv 3404 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
344 | 340, 343 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
345 | 344 | mpteq2dv 5172 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛})) |
346 | 23 | snssd 4739 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑍} ⊆ 𝑇) |
347 | 4, 346 | unssd 4116 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ⊆ 𝑇) |
348 | 3, 347 | ssexd 5243 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ V) |
349 | | elpwg 4533 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∪ {𝑍}) ∈ V → ((𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇 ↔ (𝑅 ∪ {𝑍}) ⊆ 𝑇)) |
350 | 348, 349 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇 ↔ (𝑅 ∪ {𝑍}) ⊆ 𝑇)) |
351 | 347, 350 | mpbird 256 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇) |
352 | 63 | mptex 7081 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛) ↑m
(𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) ∈ V |
353 | 352 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) ∈ V) |
354 | 48, 345, 351, 353 | fvmptd3 6880 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶‘(𝑅 ∪ {𝑍})) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛})) |
355 | | oveq2 7263 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝐽 → (0...𝑛) = (0...𝐽)) |
356 | 355 | oveq1d 7270 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) = ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
357 | | rabeq 3408 |
. . . . . . . . . . . 12
⊢
(((0...𝑛)
↑m (𝑅 ∪
{𝑍})) = ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
358 | 356, 357 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
359 | | eqeq2 2750 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → (Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽)) |
360 | 359 | rabbidv 3404 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
361 | 358, 360 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
362 | 361 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 = 𝐽) → {𝑐 ∈ ((0...𝑛) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
363 | | ovex 7288 |
. . . . . . . . . . 11
⊢
((0...𝐽)
↑m (𝑅 ∪
{𝑍})) ∈
V |
364 | 363 | rabex 5251 |
. . . . . . . . . 10
⊢ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ V |
365 | 364 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ V) |
366 | 354, 362,
45, 365 | fvmptd 6864 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
367 | | fzfid 13621 |
. . . . . . . . . 10
⊢ (𝜑 → (0...𝐽) ∈ Fin) |
368 | | snfi 8788 |
. . . . . . . . . . . 12
⊢ {𝑍} ∈ Fin |
369 | 368 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑍} ∈ Fin) |
370 | | unfi 8917 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑅 ∪ {𝑍}) ∈ Fin) |
371 | 6, 369, 370 | syl2anc 583 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ Fin) |
372 | | mapfi 9045 |
. . . . . . . . . 10
⊢
(((0...𝐽) ∈ Fin
∧ (𝑅 ∪ {𝑍}) ∈ Fin) →
((0...𝐽) ↑m
(𝑅 ∪ {𝑍})) ∈ Fin) |
373 | 367, 371,
372 | syl2anc 583 |
. . . . . . . . 9
⊢ (𝜑 → ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∈ Fin) |
374 | | ssrab2 4009 |
. . . . . . . . . 10
⊢ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) |
375 | 374 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
376 | | ssfi 8918 |
. . . . . . . . 9
⊢
((((0...𝐽)
↑m (𝑅 ∪
{𝑍})) ∈ Fin ∧
{𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ Fin) |
377 | 373, 375,
376 | syl2anc 583 |
. . . . . . . 8
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ Fin) |
378 | 366, 377 | eqeltrd 2839 |
. . . . . . 7
⊢ (𝜑 → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∈ Fin) |
379 | 378 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∈ Fin) |
380 | | dvnprodlem2.d |
. . . . . . . 8
⊢ 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
381 | 48, 45, 380, 3, 23, 10, 347 | dvnprodlem1 43377 |
. . . . . . 7
⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
382 | 381 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
383 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
384 | | opex 5373 |
. . . . . . . . 9
⊢
〈(𝐽 −
(𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V |
385 | 384 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V) |
386 | 380 | fvmpt2 6868 |
. . . . . . . 8
⊢ ((𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V) → (𝐷‘𝑐) = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
387 | 383, 385,
386 | syl2anc 583 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐷‘𝑐) = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
388 | 387 | adantlr 711 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐷‘𝑐) = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
389 | 45 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝐽 ∈
ℕ0) |
390 | | eliun 4925 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
391 | 390 | biimpi 215 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
392 | 391 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
393 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘𝜑 |
394 | | nfcv 2906 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝑝 |
395 | | nfiu1 4955 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
396 | 394, 395 | nfel 2920 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
397 | 393, 396 | nfan 1903 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
398 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(1st ‘𝑝) ∈ (0...𝐽) |
399 | | xp1st 7836 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ {𝑘}) |
400 | | elsni 4575 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑝) ∈ {𝑘} → (1st ‘𝑝) = 𝑘) |
401 | 399, 400 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) = 𝑘) |
402 | 401 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) = 𝑘) |
403 | | simpl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑘 ∈ (0...𝐽)) |
404 | 402, 403 | eqeltrd 2839 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈ (0...𝐽)) |
405 | 404 | ex 412 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽))) |
406 | 405 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽)))) |
407 | 397, 398,
406 | rexlimd 3245 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽))) |
408 | 392, 407 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈ (0...𝐽)) |
409 | | elfzelz 13185 |
. . . . . . . . . . 11
⊢
((1st ‘𝑝) ∈ (0...𝐽) → (1st ‘𝑝) ∈
ℤ) |
410 | 408, 409 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈
ℤ) |
411 | 389, 410 | bccld 42744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽C(1st ‘𝑝)) ∈
ℕ0) |
412 | 411 | nn0cnd 12225 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽C(1st ‘𝑝)) ∈ ℂ) |
413 | 412 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽C(1st ‘𝑝)) ∈ ℂ) |
414 | | elfznn0 13278 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑝) ∈ (0...𝐽) → (1st ‘𝑝) ∈
ℕ0) |
415 | 408, 414 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈
ℕ0) |
416 | 415 | faccld 13926 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (!‘(1st
‘𝑝)) ∈
ℕ) |
417 | 416 | nncnd 11919 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (!‘(1st
‘𝑝)) ∈
ℂ) |
418 | 417 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (!‘(1st
‘𝑝)) ∈
ℂ) |
419 | 6 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑅 ∈ Fin) |
420 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(2nd ‘𝑝):𝑅⟶(0...𝐽) |
421 | 84, 82 | eqsstrd 3955 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ⊆ ((0...𝑘) ↑m 𝑅)) |
422 | | ovex 7288 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(0...𝐽) ∈
V |
423 | 422 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝐽) → (0...𝐽) ∈ V) |
424 | | mapss 8635 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((0...𝐽) ∈ V
∧ (0...𝑘) ⊆
(0...𝐽)) → ((0...𝑘) ↑m 𝑅) ⊆ ((0...𝐽) ↑m 𝑅)) |
425 | 423, 122,
424 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝐽) → ((0...𝑘) ↑m 𝑅) ⊆ ((0...𝐽) ↑m 𝑅)) |
426 | 425 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((0...𝑘) ↑m 𝑅) ⊆ ((0...𝐽) ↑m 𝑅)) |
427 | 421, 426 | sstrd 3927 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ⊆ ((0...𝐽) ↑m 𝑅)) |
428 | 427 | 3adant3 1130 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝐶‘𝑅)‘𝑘) ⊆ ((0...𝐽) ↑m 𝑅)) |
429 | | xp2nd 7837 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝) ∈ ((𝐶‘𝑅)‘𝑘)) |
430 | 429 | 3ad2ant3 1133 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ ((𝐶‘𝑅)‘𝑘)) |
431 | 428, 430 | sseldd 3918 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ ((0...𝐽) ↑m 𝑅)) |
432 | | elmapi 8595 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑝) ∈ ((0...𝐽) ↑m 𝑅) → (2nd ‘𝑝):𝑅⟶(0...𝐽)) |
433 | 431, 432 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝):𝑅⟶(0...𝐽)) |
434 | 433 | 3exp 1117 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝):𝑅⟶(0...𝐽)))) |
435 | 434 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝):𝑅⟶(0...𝐽)))) |
436 | 397, 420,
435 | rexlimd 3245 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝):𝑅⟶(0...𝐽))) |
437 | 392, 436 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝):𝑅⟶(0...𝐽)) |
438 | 437 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽)) |
439 | | elfznn0 13278 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → ((2nd ‘𝑝)‘𝑡) ∈
ℕ0) |
440 | 439 | faccld 13926 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℕ) |
441 | 440 | nncnd 11919 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℂ) |
442 | 438, 441 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℂ) |
443 | 419, 442 | fprodcl 15590 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ∈ ℂ) |
444 | 443 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ∈ ℂ) |
445 | 438, 440 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℕ) |
446 | | nnne0 11937 |
. . . . . . . . . . . . 13
⊢
((!‘((2nd ‘𝑝)‘𝑡)) ∈ ℕ →
(!‘((2nd ‘𝑝)‘𝑡)) ≠ 0) |
447 | 445, 446 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (!‘((2nd
‘𝑝)‘𝑡)) ≠ 0) |
448 | 419, 442,
447 | fprodn0 15617 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ≠ 0) |
449 | 448 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ≠ 0) |
450 | 418, 444,
449 | divcld 11681 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) ∈ ℂ) |
451 | 7 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑅 ∈ Fin) |
452 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 𝜑) |
453 | 452, 13 | sylancom 587 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
454 | 452, 133 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (0...𝐽) ⊆ (0...𝑁)) |
455 | 454, 438 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)) |
456 | 452, 453,
455 | 3jca 1126 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁))) |
457 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → (𝑗 ∈ (0...𝑁) ↔ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁))) |
458 | 457 | 3anbi3d 1440 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)))) |
459 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))) |
460 | 459 | feq1d 6569 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ)) |
461 | 458, 460 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ))) |
462 | 461, 145 | vtoclg 3495 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ)) |
463 | 438, 456,
462 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ) |
464 | 463 | adantllr 715 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ) |
465 | 17 | adantlr 711 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
466 | 464, 465 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) ∈ ℂ) |
467 | 451, 466 | fprodcl 15590 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) ∈ ℂ) |
468 | 450, 467 | mulcld 10926 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) ∈ ℂ) |
469 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(𝐽 − (1st
‘𝑝)) ∈
(0...𝐽) |
470 | | simp1 1134 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝜑) |
471 | 404 | 3adant1 1128 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈ (0...𝐽)) |
472 | | fznn0sub2 13292 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑝) ∈ (0...𝐽) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
473 | 472 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (1st
‘𝑝) ∈ (0...𝐽)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
474 | 470, 471,
473 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
475 | 474 | 3exp 1117 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)))) |
476 | 475 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)))) |
477 | 397, 469,
476 | rexlimd 3245 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽))) |
478 | 392, 477 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
479 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝜑) |
480 | 479, 23 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑍 ∈ 𝑇) |
481 | 479, 133 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (0...𝐽) ⊆ (0...𝑁)) |
482 | 481, 478 | sseldd 3918 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)) |
483 | 479, 480,
482 | 3jca 1126 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁))) |
484 | | eleq1 2826 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → (𝑗 ∈ (0...𝑁) ↔ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁))) |
485 | 484 | 3anbi3d 1440 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)))) |
486 | | fveq2 6756 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))) |
487 | 486 | feq1d 6569 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ)) |
488 | 485, 487 | imbi12d 344 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → (((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ))) |
489 | | simp2 1135 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → 𝑍 ∈ 𝑇) |
490 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁))) |
491 | 26 | 3anbi2d 1439 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑍 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)))) |
492 | 179 | fveq1d 6758 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑍 → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗)) |
493 | 492 | feq1d 6569 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑍 → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ)) |
494 | 491, 493 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑍 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ))) |
495 | 494, 145 | vtoclg 3495 |
. . . . . . . . . . . . 13
⊢ (𝑍 ∈ 𝑇 → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ)) |
496 | 489, 490,
495 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) |
497 | 488, 496 | vtoclg 3495 |
. . . . . . . . . . 11
⊢ ((𝐽 − (1st
‘𝑝)) ∈
(0...𝐽) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ)) |
498 | 478, 483,
497 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ) |
499 | 498 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ) |
500 | 34 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑥 ∈ 𝑋) |
501 | 499, 500 | ffvelrnd 6944 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥) ∈ ℂ) |
502 | 468, 501 | mulcld 10926 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)) ∈ ℂ) |
503 | 413, 502 | mulcld 10926 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) ∈ ℂ) |
504 | 337, 379,
382, 388, 503 | fsumf1o 15363 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)))) |
505 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝜑) |
506 | 366 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) = {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
507 | 383, 506 | eleqtrd 2841 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
508 | 374 | sseli 3913 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} → 𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
509 | 507, 508 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍}))) |
510 | | elmapi 8595 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ ((0...𝐽) ↑m (𝑅 ∪ {𝑍})) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
511 | 509, 510 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
512 | | snidg 4592 |
. . . . . . . . . . . . . . . 16
⊢ (𝑍 ∈ 𝑇 → 𝑍 ∈ {𝑍}) |
513 | 23, 512 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
514 | | elun2 4107 |
. . . . . . . . . . . . . . 15
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
515 | 513, 514 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
516 | 515 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
517 | 511, 516 | ffvelrnd 6944 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ (0...𝐽)) |
518 | | 0zd 12261 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 0 ∈ ℤ) |
519 | 124 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 𝐽 ∈ ℤ) |
520 | | fzssz 13187 |
. . . . . . . . . . . . . . . 16
⊢
(0...𝐽) ⊆
ℤ |
521 | 520 | sseli 3913 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → (𝑐‘𝑍) ∈ ℤ) |
522 | 521 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝑐‘𝑍) ∈ ℤ) |
523 | 519, 522 | zsubcld 12360 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ ℤ) |
524 | | elfzle2 13189 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → (𝑐‘𝑍) ≤ 𝐽) |
525 | 524 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝑐‘𝑍) ≤ 𝐽) |
526 | 163 | adantr 480 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 𝐽 ∈ ℝ) |
527 | 522 | zred 12355 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝑐‘𝑍) ∈ ℝ) |
528 | 526, 527 | subge0d 11495 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (0 ≤ (𝐽 − (𝑐‘𝑍)) ↔ (𝑐‘𝑍) ≤ 𝐽)) |
529 | 525, 528 | mpbird 256 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 0 ≤ (𝐽 − (𝑐‘𝑍))) |
530 | | elfzle1 13188 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → 0 ≤ (𝑐‘𝑍)) |
531 | 530 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 0 ≤ (𝑐‘𝑍)) |
532 | 526, 527 | subge02d 11497 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (0 ≤ (𝑐‘𝑍) ↔ (𝐽 − (𝑐‘𝑍)) ≤ 𝐽)) |
533 | 531, 532 | mpbid 231 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝐽 − (𝑐‘𝑍)) ≤ 𝐽) |
534 | 518, 519,
523, 529, 533 | elfzd 13176 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽)) |
535 | 505, 517,
534 | syl2anc 583 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽)) |
536 | | bcval2 13947 |
. . . . . . . . . . 11
⊢ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) → (𝐽C(𝐽 − (𝑐‘𝑍))) = ((!‘𝐽) / ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
537 | 535, 536 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽C(𝐽 − (𝑐‘𝑍))) = ((!‘𝐽) / ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
538 | 163 | recnd 10934 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈ ℂ) |
539 | 538 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐽 ∈ ℂ) |
540 | | zsscn 12257 |
. . . . . . . . . . . . . . . . 17
⊢ ℤ
⊆ ℂ |
541 | 520, 540 | sstri 3926 |
. . . . . . . . . . . . . . . 16
⊢
(0...𝐽) ⊆
ℂ |
542 | 541 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0...𝐽) ⊆ ℂ) |
543 | 542, 517 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ ℂ) |
544 | 539, 543 | nncand 11267 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝐽 − (𝑐‘𝑍))) = (𝑐‘𝑍)) |
545 | 544 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) = (!‘(𝑐‘𝑍))) |
546 | 545 | oveq1d 7270 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍)))) = ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍))))) |
547 | 546 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘𝐽) / ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍))))) = ((!‘𝐽) / ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
548 | 45 | faccld 13926 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (!‘𝐽) ∈ ℕ) |
549 | 548 | nncnd 11919 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (!‘𝐽) ∈ ℂ) |
550 | 549 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘𝐽) ∈ ℂ) |
551 | | elfznn0 13278 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → (𝑐‘𝑍) ∈
ℕ0) |
552 | 517, 551 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈
ℕ0) |
553 | 552 | faccld 13926 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ∈ ℕ) |
554 | 553 | nncnd 11919 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ∈ ℂ) |
555 | | elfznn0 13278 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) → (𝐽 − (𝑐‘𝑍)) ∈
ℕ0) |
556 | 535, 555 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈
ℕ0) |
557 | 556 | faccld 13926 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ∈ ℕ) |
558 | 557 | nncnd 11919 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ∈ ℂ) |
559 | 553 | nnne0d 11953 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ≠ 0) |
560 | 557 | nnne0d 11953 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ≠ 0) |
561 | 550, 554,
558, 559, 560 | divdiv1d 11712 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍)))) = ((!‘𝐽) / ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
562 | 561 | eqcomd 2744 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘𝐽) / ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍))))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍))))) |
563 | 537, 547,
562 | 3eqtrd 2782 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽C(𝐽 − (𝑐‘𝑍))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍))))) |
564 | 563 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽C(𝐽 − (𝑐‘𝑍))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍))))) |
565 | | fvres 6775 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ 𝑅 → ((𝑐 ↾ 𝑅)‘𝑡) = (𝑐‘𝑡)) |
566 | 565 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝑅 → (!‘((𝑐 ↾ 𝑅)‘𝑡)) = (!‘(𝑐‘𝑡))) |
567 | 566 | prodeq2i 15557 |
. . . . . . . . . . . . . . 15
⊢
∏𝑡 ∈
𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡)) = ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) |
568 | 567 | oveq2i 7266 |
. . . . . . . . . . . . . 14
⊢
((!‘(𝐽 −
(𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) = ((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) |
569 | 565 | fveq2d 6760 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝑅 → ((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))) |
570 | 569 | fveq1d 6758 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝑅 → (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
571 | 570 | prodeq2i 15557 |
. . . . . . . . . . . . . 14
⊢
∏𝑡 ∈
𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) |
572 | 568, 571 | oveq12i 7267 |
. . . . . . . . . . . . 13
⊢
(((!‘(𝐽
− (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
573 | 572 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
574 | 573 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
575 | 558 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ∈ ℂ) |
576 | 505, 6 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ∈ Fin) |
577 | 75 | ssriv 3921 |
. . . . . . . . . . . . . . . . . 18
⊢
(0...𝐽) ⊆
ℕ0 |
578 | 577 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (0...𝐽) ⊆
ℕ0) |
579 | 511 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
580 | | elun1 4106 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ 𝑅 → 𝑡 ∈ (𝑅 ∪ {𝑍})) |
581 | 580 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ (𝑅 ∪ {𝑍})) |
582 | 579, 581 | ffvelrnd 6944 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝐽)) |
583 | 578, 582 | sseldd 3918 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈
ℕ0) |
584 | 583 | faccld 13926 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℕ) |
585 | 584 | nncnd 11919 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℂ) |
586 | 576, 585 | fprodcl 15590 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℂ) |
587 | 586 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℂ) |
588 | 7 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ∈ Fin) |
589 | 505 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝜑) |
590 | 505, 13 | sylan 579 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
591 | 589, 133 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (0...𝐽) ⊆ (0...𝑁)) |
592 | 591, 582 | sseldd 3918 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑁)) |
593 | 589, 590,
592, 146 | syl3anc 1369 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
594 | 593 | adantllr 715 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
595 | 17 | adantlr 711 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
596 | 594, 595 | ffvelrnd 6944 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
597 | 588, 596 | fprodcl 15590 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
598 | 576, 584 | fprodnncl 15593 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℕ) |
599 | | nnne0 11937 |
. . . . . . . . . . . . . 14
⊢
(∏𝑡 ∈
𝑅 (!‘(𝑐‘𝑡)) ∈ ℕ → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
600 | 598, 599 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
601 | 600 | adantlr 711 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
602 | 575, 587,
597, 601 | div32d 11704 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
603 | 574, 602 | eqtrd 2778 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
604 | 544 | fveq2d 6760 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))) |
605 | 604 | fveq1d 6758 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) |
606 | 605 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) |
607 | 603, 606 | oveq12d 7273 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) |
608 | 597, 587,
601 | divcld 11681 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) ∈ ℂ) |
609 | 505, 23 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ 𝑇) |
610 | 505, 133 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0...𝐽) ⊆ (0...𝑁)) |
611 | 610, 517 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ (0...𝑁)) |
612 | 505, 609,
611 | 3jca 1126 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁))) |
613 | | eleq1 2826 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑐‘𝑍) → (𝑗 ∈ (0...𝑁) ↔ (𝑐‘𝑍) ∈ (0...𝑁))) |
614 | 613 | 3anbi3d 1440 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑐‘𝑍) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁)))) |
615 | | fveq2 6756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑐‘𝑍) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))) |
616 | 615 | feq1d 6569 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑐‘𝑍) → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ)) |
617 | 614, 616 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑐‘𝑍) → (((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ))) |
618 | 617, 496 | vtoclg 3495 |
. . . . . . . . . . . . 13
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ)) |
619 | 517, 612,
618 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ) |
620 | 619 | adantlr 711 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ) |
621 | 34 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑥 ∈ 𝑋) |
622 | 620, 621 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥) ∈ ℂ) |
623 | 575, 608,
622 | mulassd 10929 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) |
624 | 607, 623 | eqtrd 2778 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) |
625 | 564, 624 | oveq12d 7273 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) = ((((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍)))) · ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))))) |
626 | 549 | ad2antrr 722 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘𝐽) ∈ ℂ) |
627 | 554 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ∈ ℂ) |
628 | 559 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ≠ 0) |
629 | 626, 627,
628 | divcld 11681 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘𝐽) / (!‘(𝑐‘𝑍))) ∈ ℂ) |
630 | 608, 622 | mulcld 10926 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) ∈ ℂ) |
631 | 560 | adantlr 711 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ≠ 0) |
632 | 629, 575,
630, 631 | dmmcand 42742 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍)))) · ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) |
633 | 597, 622,
587, 601 | div23d 11718 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) |
634 | 633 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
635 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
636 | | nfcv 2906 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡(((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥) |
637 | 609 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ 𝑇) |
638 | 11 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ¬ 𝑍 ∈ 𝑅) |
639 | | fveq2 6756 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑍 → (𝑐‘𝑡) = (𝑐‘𝑍)) |
640 | 179, 639 | fveq12d 6763 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑍 → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))) |
641 | 640 | fveq1d 6758 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑍 → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) |
642 | 635, 636,
588, 637, 638, 596, 641, 622 | fprodsplitsn 15627 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) |
643 | 642 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
644 | 643 | oveq1d 7270 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
645 | 634, 644 | eqtrd 2778 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
646 | 645 | oveq2d 7271 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) · (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
647 | 588, 368,
370 | sylancl 585 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑅 ∪ {𝑍}) ∈ Fin) |
648 | 505 | adantr 480 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝜑) |
649 | 347 | sselda 3917 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝑡 ∈ 𝑇) |
650 | 649 | adantlr 711 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝑡 ∈ 𝑇) |
651 | 511, 610 | fssd 6602 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝑁)) |
652 | 651 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑐‘𝑡) ∈ (0...𝑁)) |
653 | 648, 650,
652, 146 | syl3anc 1369 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
654 | 653 | adantllr 715 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
655 | 621 | adantr 480 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝑥 ∈ 𝑋) |
656 | 654, 655 | ffvelrnd 6944 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
657 | 647, 656 | fprodcl 15590 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
658 | 626, 627,
657, 587, 628, 601 | divmuldivd 11722 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) · (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
659 | 554, 586 | mulcomd 10927 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = (∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) · (!‘(𝑐‘𝑍)))) |
660 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
661 | | nfcv 2906 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(!‘(𝑐‘𝑍)) |
662 | 505, 10 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ¬ 𝑍 ∈ 𝑅) |
663 | 639 | fveq2d 6760 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑍 → (!‘(𝑐‘𝑡)) = (!‘(𝑐‘𝑍))) |
664 | 660, 661,
576, 609, 662, 585, 663, 554 | fprodsplitsn 15627 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) = (∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) · (!‘(𝑐‘𝑍)))) |
665 | 664 | eqcomd 2744 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) · (!‘(𝑐‘𝑍))) = ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) |
666 | 659, 665 | eqtrd 2778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) |
667 | 666 | oveq2d 7271 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)))) |
668 | 667 | adantlr 711 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)))) |
669 | 505, 371 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑅 ∪ {𝑍}) ∈ Fin) |
670 | 577 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (0...𝐽) ⊆
ℕ0) |
671 | 511 | ffvelrnda 6943 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑐‘𝑡) ∈ (0...𝐽)) |
672 | 670, 671 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑐‘𝑡) ∈
ℕ0) |
673 | 672 | faccld 13926 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (!‘(𝑐‘𝑡)) ∈ ℕ) |
674 | 673 | nncnd 11919 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (!‘(𝑐‘𝑡)) ∈ ℂ) |
675 | 669, 674 | fprodcl 15590 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ∈ ℂ) |
676 | 675 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ∈ ℂ) |
677 | 673 | nnne0d 11953 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (!‘(𝑐‘𝑡)) ≠ 0) |
678 | 669, 674,
677 | fprodn0 15617 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ≠ 0) |
679 | 678 | adantlr 711 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ≠ 0) |
680 | 626, 657,
676, 679 | div23d 11718 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
681 | | eqidd 2739 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
682 | 668, 680,
681 | 3eqtrd 2782 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
683 | 646, 658,
682 | 3eqtrd 2782 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
684 | 625, 632,
683 | 3eqtrd 2782 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
685 | 684 | sumeq2dv 15343 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
686 | 504, 685 | eqtrd 2778 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
687 | 294, 318,
686 | 3eqtrd 2782 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
688 | 687 | mpteq2dva 5170 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
689 | 39, 209, 688 | 3eqtrd 2782 |
1
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥)))‘𝐽) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |