Step | Hyp | Ref
| Expression |
1 | | nfv 1957 |
. . . . . 6
⊢
Ⅎ𝑡(𝜑 ∧ 𝑥 ∈ 𝑋) |
2 | | nfcv 2934 |
. . . . . 6
⊢
Ⅎ𝑡((𝐻‘𝑍)‘𝑥) |
3 | | dvnprodlem2.t |
. . . . . . . 8
⊢ (𝜑 → 𝑇 ∈ Fin) |
4 | | dvnprodlem2.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ⊆ 𝑇) |
5 | | ssfi 8470 |
. . . . . . . 8
⊢ ((𝑇 ∈ Fin ∧ 𝑅 ⊆ 𝑇) → 𝑅 ∈ Fin) |
6 | 3, 4, 5 | syl2anc 579 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ Fin) |
7 | 6 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑅 ∈ Fin) |
8 | | dvnprodlem2.z |
. . . . . . 7
⊢ (𝜑 → 𝑍 ∈ (𝑇 ∖ 𝑅)) |
9 | 8 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑍 ∈ (𝑇 ∖ 𝑅)) |
10 | 8 | eldifbd 3805 |
. . . . . . 7
⊢ (𝜑 → ¬ 𝑍 ∈ 𝑅) |
11 | 10 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ¬ 𝑍 ∈ 𝑅) |
12 | | simpl 476 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑅) → 𝜑) |
13 | 4 | sselda 3821 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
14 | | dvnprodlem2.h |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) |
15 | 12, 13, 14 | syl2anc 579 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑅) → (𝐻‘𝑡):𝑋⟶ℂ) |
16 | 15 | adantlr 705 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑅) → (𝐻‘𝑡):𝑋⟶ℂ) |
17 | | simplr 759 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
18 | 16, 17 | ffvelrnd 6626 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑡 ∈ 𝑅) → ((𝐻‘𝑡)‘𝑥) ∈ ℂ) |
19 | | fveq2 6448 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → (𝐻‘𝑡) = (𝐻‘𝑍)) |
20 | 19 | fveq1d 6450 |
. . . . . 6
⊢ (𝑡 = 𝑍 → ((𝐻‘𝑡)‘𝑥) = ((𝐻‘𝑍)‘𝑥)) |
21 | | id 22 |
. . . . . . . . 9
⊢ (𝜑 → 𝜑) |
22 | | eldifi 3955 |
. . . . . . . . . 10
⊢ (𝑍 ∈ (𝑇 ∖ 𝑅) → 𝑍 ∈ 𝑇) |
23 | 8, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑍 ∈ 𝑇) |
24 | | simpr 479 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → 𝑍 ∈ 𝑇) |
25 | | id 22 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝜑 ∧ 𝑍 ∈ 𝑇)) |
26 | | eleq1 2847 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑍 → (𝑡 ∈ 𝑇 ↔ 𝑍 ∈ 𝑇)) |
27 | 26 | anbi2d 622 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑍 → ((𝜑 ∧ 𝑡 ∈ 𝑇) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇))) |
28 | 19 | feq1d 6278 |
. . . . . . . . . . . 12
⊢ (𝑡 = 𝑍 → ((𝐻‘𝑡):𝑋⟶ℂ ↔ (𝐻‘𝑍):𝑋⟶ℂ)) |
29 | 27, 28 | imbi12d 336 |
. . . . . . . . . . 11
⊢ (𝑡 = 𝑍 → (((𝜑 ∧ 𝑡 ∈ 𝑇) → (𝐻‘𝑡):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝐻‘𝑍):𝑋⟶ℂ))) |
30 | 29, 14 | vtoclg 3467 |
. . . . . . . . . 10
⊢ (𝑍 ∈ 𝑇 → ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝐻‘𝑍):𝑋⟶ℂ)) |
31 | 24, 25, 30 | sylc 65 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇) → (𝐻‘𝑍):𝑋⟶ℂ) |
32 | 21, 23, 31 | syl2anc 579 |
. . . . . . . 8
⊢ (𝜑 → (𝐻‘𝑍):𝑋⟶ℂ) |
33 | 32 | adantr 474 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐻‘𝑍):𝑋⟶ℂ) |
34 | | simpr 479 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
35 | 33, 34 | ffvelrnd 6626 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐻‘𝑍)‘𝑥) ∈ ℂ) |
36 | 1, 2, 7, 9, 11, 18, 20, 35 | fprodsplitsn 15131 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥) = (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))) |
37 | 36 | mpteq2dva 4981 |
. . . 4
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥)))) |
38 | 37 | oveq2d 6940 |
. . 3
⊢ (𝜑 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))))) |
39 | 38 | fveq1d 6450 |
. 2
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥)))‘𝐽) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))))‘𝐽)) |
40 | | dvnprodlem2.s |
. . 3
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
41 | | dvnprodlem2.x |
. . 3
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
42 | 1, 7, 18 | fprodclf 15134 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) ∈ ℂ) |
43 | | dvnprodlem2.j |
. . . 4
⊢ (𝜑 → 𝐽 ∈ (0...𝑁)) |
44 | | elfznn0 12756 |
. . . 4
⊢ (𝐽 ∈ (0...𝑁) → 𝐽 ∈
ℕ0) |
45 | 43, 44 | syl 17 |
. . 3
⊢ (𝜑 → 𝐽 ∈
ℕ0) |
46 | | eqid 2778 |
. . 3
⊢ (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) |
47 | | eqid 2778 |
. . 3
⊢ (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) = (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) |
48 | | dvnprodlem2.c |
. . . . . . . . . 10
⊢ 𝐶 = (𝑠 ∈ 𝒫 𝑇 ↦ (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛})) |
49 | | oveq2 6932 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑅 → ((0...𝑛) ↑𝑚 𝑠) = ((0...𝑛) ↑𝑚 𝑅)) |
50 | | rabeq 3389 |
. . . . . . . . . . . . 13
⊢
(((0...𝑛)
↑𝑚 𝑠) = ((0...𝑛) ↑𝑚 𝑅) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
51 | 49, 50 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
52 | | sumeq1 14836 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = 𝑅 → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ 𝑅 (𝑐‘𝑡)) |
53 | 52 | eqeq1d 2780 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑅 → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛)) |
54 | 53 | rabbidv 3386 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
55 | 51, 54 | eqtrd 2814 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑅 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
56 | 55 | mpteq2dv 4982 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑅 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
57 | | ssexg 5043 |
. . . . . . . . . . . . . 14
⊢ ((𝑅 ⊆ 𝑇 ∧ 𝑇 ∈ Fin) → 𝑅 ∈ V) |
58 | 4, 3, 57 | syl2anc 579 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝑅 ∈ V) |
59 | | elpwg 4387 |
. . . . . . . . . . . . 13
⊢ (𝑅 ∈ V → (𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇)) |
60 | 58, 59 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑅 ∈ 𝒫 𝑇 ↔ 𝑅 ⊆ 𝑇)) |
61 | 4, 60 | mpbird 249 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅 ∈ 𝒫 𝑇) |
62 | 61 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑅 ∈ 𝒫 𝑇) |
63 | | nn0ex 11654 |
. . . . . . . . . . . 12
⊢
ℕ0 ∈ V |
64 | 63 | mptex 6760 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛)
↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) ∈ V |
65 | 64 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) ∈ V) |
66 | 48, 56, 62, 65 | fvmptd3 6566 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐶‘𝑅) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛})) |
67 | | oveq2 6932 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝑘 → (0...𝑛) = (0...𝑘)) |
68 | 67 | oveq1d 6939 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → ((0...𝑛) ↑𝑚 𝑅) = ((0...𝑘) ↑𝑚 𝑅)) |
69 | | rabeq 3389 |
. . . . . . . . . . . 12
⊢
(((0...𝑛)
↑𝑚 𝑅) = ((0...𝑘) ↑𝑚 𝑅) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
70 | 68, 69 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛}) |
71 | | eqeq2 2789 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝑘 → (Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘)) |
72 | 71 | rabbidv 3386 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
73 | 70, 72 | eqtrd 2814 |
. . . . . . . . . 10
⊢ (𝑛 = 𝑘 → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
74 | 73 | adantl 475 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑛 = 𝑘) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
75 | | elfznn0 12756 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℕ0) |
76 | 75 | adantl 475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℕ0) |
77 | | fzfid 13096 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0...𝑘) ∈ Fin) |
78 | | mapfi 8552 |
. . . . . . . . . . . 12
⊢
(((0...𝑘) ∈ Fin
∧ 𝑅 ∈ Fin) →
((0...𝑘)
↑𝑚 𝑅) ∈ Fin) |
79 | 77, 6, 78 | syl2anc 579 |
. . . . . . . . . . 11
⊢ (𝜑 → ((0...𝑘) ↑𝑚 𝑅) ∈ Fin) |
80 | 79 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((0...𝑘) ↑𝑚 𝑅) ∈ Fin) |
81 | | ssrab2 3908 |
. . . . . . . . . . 11
⊢ {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ⊆ ((0...𝑘) ↑𝑚 𝑅) |
82 | 81 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ⊆ ((0...𝑘) ↑𝑚 𝑅)) |
83 | 80, 82 | ssexd 5044 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ V) |
84 | 66, 74, 76, 83 | fvmptd 6550 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) = {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
85 | | ssfi 8470 |
. . . . . . . . . 10
⊢
((((0...𝑘)
↑𝑚 𝑅) ∈ Fin ∧ {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ⊆ ((0...𝑘) ↑𝑚 𝑅)) → {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ Fin) |
86 | 79, 81, 85 | sylancl 580 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ Fin) |
87 | 86 | adantr 474 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} ∈ Fin) |
88 | 84, 87 | eqeltrd 2859 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ∈ Fin) |
89 | 88 | adantr 474 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) → ((𝐶‘𝑅)‘𝑘) ∈ Fin) |
90 | 75 | faccld 13395 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...𝐽) → (!‘𝑘) ∈ ℕ) |
91 | 90 | nncnd 11397 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝐽) → (!‘𝑘) ∈ ℂ) |
92 | 91 | ad2antlr 717 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (!‘𝑘) ∈ ℂ) |
93 | 6 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑅 ∈ Fin) |
94 | 93 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑅 ∈ Fin) |
95 | | elfznn0 12756 |
. . . . . . . . . . . . . . 15
⊢ (𝑧 ∈ (0...𝑘) → 𝑧 ∈ ℕ0) |
96 | 95 | ssriv 3825 |
. . . . . . . . . . . . . 14
⊢
(0...𝑘) ⊆
ℕ0 |
97 | 96 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (0...𝑘) ⊆
ℕ0) |
98 | | simpr 479 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) |
99 | 84 | eleq2d 2845 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑐 ∈ ((𝐶‘𝑅)‘𝑘) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘})) |
100 | 99 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (𝑐 ∈ ((𝐶‘𝑅)‘𝑘) ↔ 𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘})) |
101 | 98, 100 | mpbid 224 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘}) |
102 | 81 | sseli 3817 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) ∣ Σ𝑡 ∈ 𝑅 (𝑐‘𝑡) = 𝑘} → 𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅)) |
103 | 101, 102 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅)) |
104 | | elmapi 8164 |
. . . . . . . . . . . . . . . 16
⊢ (𝑐 ∈ ((0...𝑘) ↑𝑚 𝑅) → 𝑐:𝑅⟶(0...𝑘)) |
105 | 103, 104 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑐:𝑅⟶(0...𝑘)) |
106 | 105 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑐:𝑅⟶(0...𝑘)) |
107 | | simpr 479 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑅) |
108 | 106, 107 | ffvelrnd 6626 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑘)) |
109 | 97, 108 | sseldd 3822 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈
ℕ0) |
110 | 109 | faccld 13395 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℕ) |
111 | 110 | nncnd 11397 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℂ) |
112 | 94, 111 | fprodcl 15094 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℂ) |
113 | 110 | nnne0d 11430 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ≠ 0) |
114 | 94, 111, 113 | fprodn0 15121 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
115 | 92, 112, 114 | divcld 11154 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) ∈ ℂ) |
116 | 115 | adantlr 705 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) ∈ ℂ) |
117 | 94 | adantlr 705 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → 𝑅 ∈ Fin) |
118 | 21 | ad4antr 722 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝜑) |
119 | 118, 13 | sylancom 582 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
120 | | elfzuz3 12661 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ (ℤ≥‘𝑘)) |
121 | | fzss2 12703 |
. . . . . . . . . . . . . . . 16
⊢ (𝐽 ∈
(ℤ≥‘𝑘) → (0...𝑘) ⊆ (0...𝐽)) |
122 | 120, 121 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (0...𝑘) ⊆ (0...𝐽)) |
123 | 122 | adantl 475 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0...𝑘) ⊆ (0...𝐽)) |
124 | 45 | nn0zd 11837 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐽 ∈ ℤ) |
125 | | dvnprodlem2.n |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝑁 ∈
ℕ0) |
126 | 125 | nn0zd 11837 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝑁 ∈ ℤ) |
127 | | elfzle2 12667 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐽 ∈ (0...𝑁) → 𝐽 ≤ 𝑁) |
128 | 43, 127 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐽 ≤ 𝑁) |
129 | 124, 126,
128 | 3jca 1119 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ≤ 𝑁)) |
130 | | eluz2 12003 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑁 ∈
(ℤ≥‘𝐽) ↔ (𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐽 ≤ 𝑁)) |
131 | 129, 130 | sylibr 226 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝐽)) |
132 | | fzss2 12703 |
. . . . . . . . . . . . . . . 16
⊢ (𝑁 ∈
(ℤ≥‘𝐽) → (0...𝐽) ⊆ (0...𝑁)) |
133 | 131, 132 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (0...𝐽) ⊆ (0...𝑁)) |
134 | 133 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0...𝐽) ⊆ (0...𝑁)) |
135 | 123, 134 | sstrd 3831 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0...𝑘) ⊆ (0...𝑁)) |
136 | 135 | ad2antrr 716 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (0...𝑘) ⊆ (0...𝑁)) |
137 | 136, 108 | sseldd 3822 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑁)) |
138 | 137 | adantllr 709 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑁)) |
139 | | fvex 6461 |
. . . . . . . . . . 11
⊢ (𝑐‘𝑡) ∈ V |
140 | | eleq1 2847 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑐‘𝑡) → (𝑗 ∈ (0...𝑁) ↔ (𝑐‘𝑡) ∈ (0...𝑁))) |
141 | 140 | 3anbi3d 1515 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑐‘𝑡) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑐‘𝑡) ∈ (0...𝑁)))) |
142 | | fveq2 6448 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝑐‘𝑡) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))) |
143 | 142 | feq1d 6278 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝑐‘𝑡) → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ)) |
144 | 141, 143 | imbi12d 336 |
. . . . . . . . . . 11
⊢ (𝑗 = (𝑐‘𝑡) → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑐‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ))) |
145 | | dvnprodlem2.dvnh |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) |
146 | 139, 144,
145 | vtocl 3460 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ (𝑐‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
147 | 118, 119,
138, 146 | syl3anc 1439 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
148 | | simpllr 766 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
149 | 147, 148 | ffvelrnd 6626 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ∧ 𝑡 ∈ 𝑅) → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
150 | 117, 149 | fprodcl 15094 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
151 | 116, 150 | mulcld 10399 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
152 | 89, 151 | fsumcl 14880 |
. . . . 5
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) → Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
153 | 152 | fmpttd 6651 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))):𝑋⟶ℂ) |
154 | | dvnprodlem2.ind |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
155 | 154 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ∀𝑘 ∈ (0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
156 | | 0zd 11745 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 0 ∈ ℤ) |
157 | 126 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑁 ∈ ℤ) |
158 | | elfzelz 12664 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℤ) |
159 | 158 | adantl 475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℤ) |
160 | 156, 157,
159 | 3jca 1119 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈
ℤ)) |
161 | | elfzle1 12666 |
. . . . . . . . 9
⊢ (𝑘 ∈ (0...𝐽) → 0 ≤ 𝑘) |
162 | 161 | adantl 475 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 0 ≤ 𝑘) |
163 | 159 | zred 11839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ ℝ) |
164 | 45 | nn0red 11708 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐽 ∈ ℝ) |
165 | 164 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ∈ ℝ) |
166 | 157 | zred 11839 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑁 ∈ ℝ) |
167 | | elfzle2 12667 |
. . . . . . . . . 10
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ≤ 𝐽) |
168 | 167 | adantl 475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ≤ 𝐽) |
169 | 128 | adantr 474 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ≤ 𝑁) |
170 | 163, 165,
166, 168, 169 | letrd 10535 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ≤ 𝑁) |
171 | 160, 162,
170 | jca32 511 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑘 ∧ 𝑘 ≤ 𝑁))) |
172 | | elfz2 12655 |
. . . . . . 7
⊢ (𝑘 ∈ (0...𝑁) ↔ ((0 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (0 ≤
𝑘 ∧ 𝑘 ≤ 𝑁))) |
173 | 171, 172 | sylibr 226 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑘 ∈ (0...𝑁)) |
174 | | rspa 3112 |
. . . . . 6
⊢
((∀𝑘 ∈
(0...𝑁)((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
175 | 155, 173,
174 | syl2anc 579 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
176 | 175 | feq1d 6278 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘):𝑋⟶ℂ ↔ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))):𝑋⟶ℂ)) |
177 | 153, 176 | mpbird 249 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘):𝑋⟶ℂ) |
178 | 23 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝑍 ∈ 𝑇) |
179 | | simpl 476 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝜑) |
180 | 179, 178,
173 | 3jca 1119 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁))) |
181 | 26 | 3anbi2d 1514 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)))) |
182 | 19 | oveq2d 6940 |
. . . . . . . . 9
⊢ (𝑡 = 𝑍 → (𝑆 D𝑛 (𝐻‘𝑡)) = (𝑆 D𝑛 (𝐻‘𝑍))) |
183 | 182 | fveq1d 6450 |
. . . . . . . 8
⊢ (𝑡 = 𝑍 → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘)) |
184 | 183 | feq1d 6278 |
. . . . . . 7
⊢ (𝑡 = 𝑍 → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ)) |
185 | 181, 184 | imbi12d 336 |
. . . . . 6
⊢ (𝑡 = 𝑍 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ))) |
186 | | eleq1 2847 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → (𝑗 ∈ (0...𝑁) ↔ 𝑘 ∈ (0...𝑁))) |
187 | 186 | 3anbi3d 1515 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)))) |
188 | | fveq2 6448 |
. . . . . . . . 9
⊢ (𝑗 = 𝑘 → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘)) |
189 | 188 | feq1d 6278 |
. . . . . . . 8
⊢ (𝑗 = 𝑘 → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ)) |
190 | 187, 189 | imbi12d 336 |
. . . . . . 7
⊢ (𝑗 = 𝑘 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ))) |
191 | 190, 145 | chvarv 2361 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑘):𝑋⟶ℂ) |
192 | 185, 191 | vtoclg 3467 |
. . . . 5
⊢ (𝑍 ∈ 𝑇 → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ)) |
193 | 178, 180,
192 | sylc 65 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ) |
194 | 32 | feqmptd 6511 |
. . . . . . . . 9
⊢ (𝜑 → (𝐻‘𝑍) = (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥))) |
195 | 194 | eqcomd 2784 |
. . . . . . . 8
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) = (𝐻‘𝑍)) |
196 | 195 | oveq2d 6940 |
. . . . . . 7
⊢ (𝜑 → (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥))) = (𝑆 D𝑛 (𝐻‘𝑍))) |
197 | 196 | fveq1d 6450 |
. . . . . 6
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘)) |
198 | 197 | adantr 474 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘)) |
199 | 198 | feq1d 6278 |
. . . 4
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ)) |
200 | 193, 199 | mpbird 249 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘):𝑋⟶ℂ) |
201 | | fveq2 6448 |
. . . . . . . 8
⊢ (𝑦 = 𝑥 → ((𝐻‘𝑡)‘𝑦) = ((𝐻‘𝑡)‘𝑥)) |
202 | 201 | prodeq2ad 40746 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦) = ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) |
203 | 202 | cbvmptv 4987 |
. . . . . 6
⊢ (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)) = (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)) |
204 | 203 | oveq2i 6935 |
. . . . 5
⊢ (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥))) |
205 | 204 | fveq1i 6449 |
. . . 4
⊢ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) |
206 | 205 | mpteq2i 4978 |
. . 3
⊢ (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘)) = (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘)) |
207 | | fveq2 6448 |
. . . . . . 7
⊢ (𝑦 = 𝑥 → ((𝐻‘𝑍)‘𝑦) = ((𝐻‘𝑍)‘𝑥)) |
208 | 207 | cbvmptv 4987 |
. . . . . 6
⊢ (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)) = (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)) |
209 | 208 | oveq2i 6935 |
. . . . 5
⊢ (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦))) = (𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥))) |
210 | 209 | fveq1i 6449 |
. . . 4
⊢ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘) |
211 | 210 | mpteq2i 4978 |
. . 3
⊢ (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑥)))‘𝑘)) |
212 | 40, 41, 42, 35, 45, 46, 47, 177, 200, 206, 211 | dvnmul 41100 |
. 2
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ (∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥) · ((𝐻‘𝑍)‘𝑥))))‘𝐽) = (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))))) |
213 | 205 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘)) |
214 | 154 | r19.21bi 3114 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
215 | 179, 173,
214 | syl2anc 579 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑥)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
216 | 213, 215 | eqtrd 2814 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
217 | 216 | mpteq2dva 4981 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘)) = (𝑘 ∈ (0...𝐽) ↦ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))))) |
218 | | mptexg 6758 |
. . . . . . . . . . . . . 14
⊢ (𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∈ V) |
219 | 41, 218 | syl 17 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∈ V) |
220 | 219 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) ∈ V) |
221 | 217, 220 | fvmpt2d 6556 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
222 | 221 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
223 | 222 | fveq1d 6450 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) = ((𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))‘𝑥)) |
224 | 34 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → 𝑥 ∈ 𝑋) |
225 | 152 | an32s 642 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
226 | | eqid 2778 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
227 | 226 | fvmpt2 6554 |
. . . . . . . . . 10
⊢ ((𝑥 ∈ 𝑋 ∧ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) → ((𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))‘𝑥) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
228 | 224, 225,
227 | syl2anc 579 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))‘𝑥) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
229 | 223, 228 | eqtrd 2814 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
230 | | fveq2 6448 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘) = ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗)) |
231 | 230 | cbvmptv 4987 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗)) |
232 | 231 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗))) |
233 | 209, 196 | syl5eq 2826 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦))) = (𝑆 D𝑛 (𝐻‘𝑍))) |
234 | 233 | fveq1d 6450 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗)) |
235 | 234 | mpteq2dv 4982 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑗)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗))) |
236 | 232, 235 | eqtrd 2814 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗))) |
237 | 236 | adantr 474 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘)) = (𝑗 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗))) |
238 | | fveq2 6448 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝐽 − 𝑘) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
239 | 238 | adantl 475 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑗 = (𝐽 − 𝑘)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
240 | | 0zd 11745 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → 0 ∈ ℤ) |
241 | | elfzel2 12662 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ ℤ) |
242 | 241, 158 | zsubcld 11844 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (𝐽 − 𝑘) ∈ ℤ) |
243 | 240, 241,
242 | 3jca 1119 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → (0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ)) |
244 | 241 | zred 11839 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝐽) → 𝐽 ∈ ℝ) |
245 | 75 | nn0red 11708 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 ∈ (0...𝐽) → 𝑘 ∈ ℝ) |
246 | 244, 245 | subge0d 10968 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (0 ≤ (𝐽 − 𝑘) ↔ 𝑘 ≤ 𝐽)) |
247 | 167, 246 | mpbird 249 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → 0 ≤ (𝐽 − 𝑘)) |
248 | 244, 245 | subge02d 10970 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 ∈ (0...𝐽) → (0 ≤ 𝑘 ↔ (𝐽 − 𝑘) ≤ 𝐽)) |
249 | 161, 248 | mpbid 224 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → (𝐽 − 𝑘) ≤ 𝐽) |
250 | 243, 247,
249 | jca32 511 |
. . . . . . . . . . . . 13
⊢ (𝑘 ∈ (0...𝐽) → ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ) ∧ (0 ≤ (𝐽 − 𝑘) ∧ (𝐽 − 𝑘) ≤ 𝐽))) |
251 | 250 | adantl 475 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ) ∧ (0 ≤ (𝐽 − 𝑘) ∧ (𝐽 − 𝑘) ≤ 𝐽))) |
252 | | elfz2 12655 |
. . . . . . . . . . . 12
⊢ ((𝐽 − 𝑘) ∈ (0...𝐽) ↔ ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − 𝑘) ∈ ℤ) ∧ (0 ≤ (𝐽 − 𝑘) ∧ (𝐽 − 𝑘) ≤ 𝐽))) |
253 | 251, 252 | sylibr 226 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐽 − 𝑘) ∈ (0...𝐽)) |
254 | | fvex 6461 |
. . . . . . . . . . . 12
⊢ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)) ∈ V |
255 | 254 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)) ∈ V) |
256 | 237, 239,
253, 255 | fvmptd 6550 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘)) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
257 | 256 | adantlr 705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘)) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
258 | 257 | fveq1d 6450 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) |
259 | 229, 258 | oveq12d 6942 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥)) = (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) |
260 | 259 | oveq2d 6940 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = ((𝐽C𝑘) · (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
261 | 88 | adantlr 705 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ∈ Fin) |
262 | | ovex 6956 |
. . . . . . . . . . . 12
⊢ (𝐽 − 𝑘) ∈ V |
263 | | eleq1 2847 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 − 𝑘) → (𝑗 ∈ (0...𝐽) ↔ (𝐽 − 𝑘) ∈ (0...𝐽))) |
264 | 263 | anbi2d 622 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − 𝑘) → ((𝜑 ∧ 𝑗 ∈ (0...𝐽)) ↔ (𝜑 ∧ (𝐽 − 𝑘) ∈ (0...𝐽)))) |
265 | 238 | feq1d 6278 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − 𝑘) → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ)) |
266 | 264, 265 | imbi12d 336 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝐽 − 𝑘) → (((𝜑 ∧ 𝑗 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ (𝐽 − 𝑘) ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ))) |
267 | | eleq1 2847 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → (𝑘 ∈ (0...𝐽) ↔ 𝑗 ∈ (0...𝐽))) |
268 | 267 | anbi2d 622 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ↔ (𝜑 ∧ 𝑗 ∈ (0...𝐽)))) |
269 | | fveq2 6448 |
. . . . . . . . . . . . . . 15
⊢ (𝑘 = 𝑗 → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗)) |
270 | 269 | feq1d 6278 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑗 → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ)) |
271 | 268, 270 | imbi12d 336 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑗 → (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑘):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ))) |
272 | 271, 193 | chvarv 2361 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) |
273 | 262, 266,
272 | vtocl 3460 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝐽 − 𝑘) ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ) |
274 | 179, 253,
273 | syl2anc 579 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ) |
275 | 274 | adantlr 705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘)):𝑋⟶ℂ) |
276 | 275, 224 | ffvelrnd 6626 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥) ∈ ℂ) |
277 | | anass 462 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ↔ (𝜑 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋))) |
278 | | ancom 454 |
. . . . . . . . . . . . . 14
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋) ↔ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽))) |
279 | 278 | anbi2i 616 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋)) ↔ (𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽)))) |
280 | | anass 462 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ↔ (𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽)))) |
281 | 280 | bicomi 216 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑥 ∈ 𝑋 ∧ 𝑘 ∈ (0...𝐽))) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽))) |
282 | 279, 281 | bitri 267 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑥 ∈ 𝑋)) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽))) |
283 | 277, 282 | bitri 267 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ↔ ((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽))) |
284 | 283 | anbi1i 617 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) ↔ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) |
285 | 284 | imbi1i 341 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) ↔ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ)) |
286 | 151, 285 | mpbi 222 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) ∈ ℂ) |
287 | 261, 276,
286 | fsummulc1 14930 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) |
288 | 287 | oveq2d 6940 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · (Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)(((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) = ((𝐽C𝑘) · Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
289 | 179, 45 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → 𝐽 ∈
ℕ0) |
290 | 289, 159 | bccld 40453 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐽C𝑘) ∈
ℕ0) |
291 | 290 | nn0cnd 11709 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → (𝐽C𝑘) ∈ ℂ) |
292 | 291 | adantlr 705 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → (𝐽C𝑘) ∈ ℂ) |
293 | 276 | adantr 474 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥) ∈ ℂ) |
294 | 286, 293 | mulcld 10399 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘)) → ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) ∈ ℂ) |
295 | 261, 292,
294 | fsummulc2 14929 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
296 | 260, 288,
295 | 3eqtrd 2818 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑘 ∈ (0...𝐽)) → ((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
297 | 296 | sumeq2dv 14850 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑘 ∈ (0...𝐽)Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
298 | | vex 3401 |
. . . . . . . 8
⊢ 𝑘 ∈ V |
299 | | vex 3401 |
. . . . . . . 8
⊢ 𝑐 ∈ V |
300 | 298, 299 | op1std 7457 |
. . . . . . 7
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (1st ‘𝑝) = 𝑘) |
301 | 300 | oveq2d 6940 |
. . . . . 6
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (𝐽C(1st ‘𝑝)) = (𝐽C𝑘)) |
302 | 300 | fveq2d 6452 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (!‘(1st
‘𝑝)) = (!‘𝑘)) |
303 | 298, 299 | op2ndd 7458 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (2nd ‘𝑝) = 𝑐) |
304 | 303 | fveq1d 6450 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((2nd ‘𝑝)‘𝑡) = (𝑐‘𝑡)) |
305 | 304 | fveq2d 6452 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (!‘((2nd
‘𝑝)‘𝑡)) = (!‘(𝑐‘𝑡))) |
306 | 305 | prodeq2ad 40746 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) = ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) |
307 | 302, 306 | oveq12d 6942 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) = ((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
308 | 304 | fveq2d 6452 |
. . . . . . . . . 10
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))) |
309 | 308 | fveq1d 6450 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
310 | 309 | prodeq2ad 40746 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
311 | 307, 310 | oveq12d 6942 |
. . . . . . 7
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) = (((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
312 | 300 | oveq2d 6940 |
. . . . . . . . 9
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (𝐽 − (1st ‘𝑝)) = (𝐽 − 𝑘)) |
313 | 312 | fveq2d 6452 |
. . . . . . . 8
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))) |
314 | 313 | fveq1d 6450 |
. . . . . . 7
⊢ (𝑝 = 〈𝑘, 𝑐〉 → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) |
315 | 311, 314 | oveq12d 6942 |
. . . . . 6
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)) = ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) |
316 | 301, 315 | oveq12d 6942 |
. . . . 5
⊢ (𝑝 = 〈𝑘, 𝑐〉 → ((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = ((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)))) |
317 | | fzfid 13096 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (0...𝐽) ∈ Fin) |
318 | 292 | adantrr 707 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) → (𝐽C𝑘) ∈ ℂ) |
319 | 294 | anasss 460 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) → ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥)) ∈ ℂ) |
320 | 318, 319 | mulcld 10399 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ (𝑘 ∈ (0...𝐽) ∧ 𝑐 ∈ ((𝐶‘𝑅)‘𝑘))) → ((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) ∈ ℂ) |
321 | 316, 317,
261, 320 | fsum2d 14916 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝐽)Σ𝑐 ∈ ((𝐶‘𝑅)‘𝑘)((𝐽C𝑘) · ((((!‘𝑘) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)))) |
322 | | ovex 6956 |
. . . . . . . . 9
⊢ (𝐽 − (𝑐‘𝑍)) ∈ V |
323 | 299 | resex 5695 |
. . . . . . . . 9
⊢ (𝑐 ↾ 𝑅) ∈ V |
324 | 322, 323 | op1std 7457 |
. . . . . . . 8
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (1st ‘𝑝) = (𝐽 − (𝑐‘𝑍))) |
325 | 324 | oveq2d 6940 |
. . . . . . 7
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (𝐽C(1st ‘𝑝)) = (𝐽C(𝐽 − (𝑐‘𝑍)))) |
326 | 324 | fveq2d 6452 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (!‘(1st
‘𝑝)) =
(!‘(𝐽 − (𝑐‘𝑍)))) |
327 | 322, 323 | op2ndd 7458 |
. . . . . . . . . . . . 13
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (2nd ‘𝑝) = (𝑐 ↾ 𝑅)) |
328 | 327 | fveq1d 6450 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((2nd ‘𝑝)‘𝑡) = ((𝑐 ↾ 𝑅)‘𝑡)) |
329 | 328 | fveq2d 6452 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (!‘((2nd
‘𝑝)‘𝑡)) = (!‘((𝑐 ↾ 𝑅)‘𝑡))) |
330 | 329 | prodeq2ad 40746 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) = ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) |
331 | 326, 330 | oveq12d 6942 |
. . . . . . . . 9
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) = ((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡)))) |
332 | 328 | fveq2d 6452 |
. . . . . . . . . . 11
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))) |
333 | 332 | fveq1d 6450 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) |
334 | 333 | prodeq2ad 40746 |
. . . . . . . . 9
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) |
335 | 331, 334 | oveq12d 6942 |
. . . . . . . 8
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥))) |
336 | 324 | oveq2d 6940 |
. . . . . . . . . 10
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (𝐽 − (1st ‘𝑝)) = (𝐽 − (𝐽 − (𝑐‘𝑍)))) |
337 | 336 | fveq2d 6452 |
. . . . . . . . 9
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))) |
338 | 337 | fveq1d 6450 |
. . . . . . . 8
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)) |
339 | 335, 338 | oveq12d 6942 |
. . . . . . 7
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)) = ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) |
340 | 325, 339 | oveq12d 6942 |
. . . . . 6
⊢ (𝑝 = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 → ((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = ((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)))) |
341 | | oveq2 6932 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → ((0...𝑛) ↑𝑚 𝑠) = ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍}))) |
342 | | rabeq 3389 |
. . . . . . . . . . . . 13
⊢
(((0...𝑛)
↑𝑚 𝑠) = ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
343 | 341, 342 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) |
344 | | sumeq1 14836 |
. . . . . . . . . . . . . 14
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡)) |
345 | 344 | eqeq1d 2780 |
. . . . . . . . . . . . 13
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → (Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛)) |
346 | 345 | rabbidv 3386 |
. . . . . . . . . . . 12
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
347 | 343, 346 | eqtrd 2814 |
. . . . . . . . . . 11
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
348 | 347 | mpteq2dv 4982 |
. . . . . . . . . 10
⊢ (𝑠 = (𝑅 ∪ {𝑍}) → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 𝑠) ∣ Σ𝑡 ∈ 𝑠 (𝑐‘𝑡) = 𝑛}) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛})) |
349 | 23 | snssd 4573 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑍} ⊆ 𝑇) |
350 | 4, 349 | unssd 4012 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ⊆ 𝑇) |
351 | 3, 350 | ssexd 5044 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ V) |
352 | | elpwg 4387 |
. . . . . . . . . . . 12
⊢ ((𝑅 ∪ {𝑍}) ∈ V → ((𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇 ↔ (𝑅 ∪ {𝑍}) ⊆ 𝑇)) |
353 | 351, 352 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇 ↔ (𝑅 ∪ {𝑍}) ⊆ 𝑇)) |
354 | 350, 353 | mpbird 249 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ 𝒫 𝑇) |
355 | 63 | mptex 6760 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ ℕ0
↦ {𝑐 ∈
((0...𝑛)
↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) ∈ V |
356 | 355 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) ∈ V) |
357 | 48, 348, 354, 356 | fvmptd3 6566 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶‘(𝑅 ∪ {𝑍})) = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛})) |
358 | | oveq2 6932 |
. . . . . . . . . . . . 13
⊢ (𝑛 = 𝐽 → (0...𝑛) = (0...𝐽)) |
359 | 358 | oveq1d 6939 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) = ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍}))) |
360 | | rabeq 3389 |
. . . . . . . . . . . 12
⊢
(((0...𝑛)
↑𝑚 (𝑅 ∪ {𝑍})) = ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) → {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
361 | 359, 360 | syl 17 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛}) |
362 | | eqeq2 2789 |
. . . . . . . . . . . 12
⊢ (𝑛 = 𝐽 → (Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛 ↔ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽)) |
363 | 362 | rabbidv 3386 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
364 | 361, 363 | eqtrd 2814 |
. . . . . . . . . 10
⊢ (𝑛 = 𝐽 → {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
365 | 364 | adantl 475 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑛 = 𝐽) → {𝑐 ∈ ((0...𝑛) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝑛} = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
366 | | ovex 6956 |
. . . . . . . . . . 11
⊢
((0...𝐽)
↑𝑚 (𝑅 ∪ {𝑍})) ∈ V |
367 | 366 | rabex 5051 |
. . . . . . . . . 10
⊢ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ V |
368 | 367 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ V) |
369 | 357, 365,
45, 368 | fvmptd 6550 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
370 | | fzfid 13096 |
. . . . . . . . . 10
⊢ (𝜑 → (0...𝐽) ∈ Fin) |
371 | | snfi 8328 |
. . . . . . . . . . . 12
⊢ {𝑍} ∈ Fin |
372 | 371 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑍} ∈ Fin) |
373 | | unfi 8517 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Fin ∧ {𝑍} ∈ Fin) → (𝑅 ∪ {𝑍}) ∈ Fin) |
374 | 6, 372, 373 | syl2anc 579 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑅 ∪ {𝑍}) ∈ Fin) |
375 | | mapfi 8552 |
. . . . . . . . . 10
⊢
(((0...𝐽) ∈ Fin
∧ (𝑅 ∪ {𝑍}) ∈ Fin) →
((0...𝐽)
↑𝑚 (𝑅 ∪ {𝑍})) ∈ Fin) |
376 | 370, 374,
375 | syl2anc 579 |
. . . . . . . . 9
⊢ (𝜑 → ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∈ Fin) |
377 | | ssrab2 3908 |
. . . . . . . . . 10
⊢ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) |
378 | 377 | a1i 11 |
. . . . . . . . 9
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍}))) |
379 | | ssfi 8470 |
. . . . . . . . 9
⊢
((((0...𝐽)
↑𝑚 (𝑅 ∪ {𝑍})) ∈ Fin ∧ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ⊆ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍}))) → {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ Fin) |
380 | 376, 378,
379 | syl2anc 579 |
. . . . . . . 8
⊢ (𝜑 → {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} ∈ Fin) |
381 | 369, 380 | eqeltrd 2859 |
. . . . . . 7
⊢ (𝜑 → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∈ Fin) |
382 | 381 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∈ Fin) |
383 | | dvnprodlem2.d |
. . . . . . . 8
⊢ 𝐷 = (𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ↦ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
384 | 48, 45, 383, 3, 23, 10, 350 | dvnprodlem1 41103 |
. . . . . . 7
⊢ (𝜑 → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
385 | 384 | adantr 474 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → 𝐷:((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)–1-1-onto→∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
386 | | simpr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
387 | | opex 5166 |
. . . . . . . . 9
⊢
〈(𝐽 −
(𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V |
388 | 387 | a1i 11 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V) |
389 | 383 | fvmpt2 6554 |
. . . . . . . 8
⊢ ((𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) ∧ 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉 ∈ V) → (𝐷‘𝑐) = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
390 | 386, 388,
389 | syl2anc 579 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐷‘𝑐) = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
391 | 390 | adantlr 705 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐷‘𝑐) = 〈(𝐽 − (𝑐‘𝑍)), (𝑐 ↾ 𝑅)〉) |
392 | 45 | adantr 474 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝐽 ∈
ℕ0) |
393 | | eliun 4759 |
. . . . . . . . . . . . . 14
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) ↔ ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
394 | 393 | biimpi 208 |
. . . . . . . . . . . . 13
⊢ (𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) → ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
395 | 394 | adantl 475 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
396 | | nfv 1957 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘𝜑 |
397 | | nfcv 2934 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘𝑝 |
398 | | nfiu1 4785 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑘∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
399 | 397, 398 | nfel 2946 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘 𝑝 ∈ ∪ 𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘)) |
400 | 396, 399 | nfan 1946 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) |
401 | | nfv 1957 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(1st ‘𝑝) ∈ (0...𝐽) |
402 | | xp1st 7479 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ {𝑘}) |
403 | | elsni 4415 |
. . . . . . . . . . . . . . . . . 18
⊢
((1st ‘𝑝) ∈ {𝑘} → (1st ‘𝑝) = 𝑘) |
404 | 402, 403 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) = 𝑘) |
405 | 404 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) = 𝑘) |
406 | | simpl 476 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑘 ∈ (0...𝐽)) |
407 | 405, 406 | eqeltrd 2859 |
. . . . . . . . . . . . . . 15
⊢ ((𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈ (0...𝐽)) |
408 | 407 | ex 403 |
. . . . . . . . . . . . . 14
⊢ (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽))) |
409 | 408 | a1i 11 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽)))) |
410 | 400, 401,
409 | rexlimd 3208 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (1st ‘𝑝) ∈ (0...𝐽))) |
411 | 395, 410 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈ (0...𝐽)) |
412 | | elfzelz 12664 |
. . . . . . . . . . 11
⊢
((1st ‘𝑝) ∈ (0...𝐽) → (1st ‘𝑝) ∈
ℤ) |
413 | 411, 412 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈
ℤ) |
414 | 392, 413 | bccld 40453 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽C(1st ‘𝑝)) ∈
ℕ0) |
415 | 414 | nn0cnd 11709 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽C(1st ‘𝑝)) ∈ ℂ) |
416 | 415 | adantlr 705 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽C(1st ‘𝑝)) ∈ ℂ) |
417 | | elfznn0 12756 |
. . . . . . . . . . . . . 14
⊢
((1st ‘𝑝) ∈ (0...𝐽) → (1st ‘𝑝) ∈
ℕ0) |
418 | 411, 417 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈
ℕ0) |
419 | 418 | faccld 13395 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (!‘(1st
‘𝑝)) ∈
ℕ) |
420 | 419 | nncnd 11397 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (!‘(1st
‘𝑝)) ∈
ℂ) |
421 | 420 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (!‘(1st
‘𝑝)) ∈
ℂ) |
422 | 6 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑅 ∈ Fin) |
423 | | nfv 1957 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑘(2nd ‘𝑝):𝑅⟶(0...𝐽) |
424 | 84, 82 | eqsstrd 3858 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ⊆ ((0...𝑘) ↑𝑚 𝑅)) |
425 | | ovex 6956 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(0...𝐽) ∈
V |
426 | 425 | a1i 11 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ (0...𝐽) → (0...𝐽) ∈ V) |
427 | | mapss 8188 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢
(((0...𝐽) ∈ V
∧ (0...𝑘) ⊆
(0...𝐽)) → ((0...𝑘) ↑𝑚
𝑅) ⊆ ((0...𝐽) ↑𝑚
𝑅)) |
428 | 426, 122,
427 | syl2anc 579 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ (0...𝐽) → ((0...𝑘) ↑𝑚 𝑅) ⊆ ((0...𝐽) ↑𝑚
𝑅)) |
429 | 428 | adantl 475 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((0...𝑘) ↑𝑚 𝑅) ⊆ ((0...𝐽) ↑𝑚
𝑅)) |
430 | 424, 429 | sstrd 3831 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽)) → ((𝐶‘𝑅)‘𝑘) ⊆ ((0...𝐽) ↑𝑚 𝑅)) |
431 | 430 | 3adant3 1123 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝐶‘𝑅)‘𝑘) ⊆ ((0...𝐽) ↑𝑚 𝑅)) |
432 | | xp2nd 7480 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝) ∈ ((𝐶‘𝑅)‘𝑘)) |
433 | 432 | 3ad2ant3 1126 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ ((𝐶‘𝑅)‘𝑘)) |
434 | 431, 433 | sseldd 3822 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝) ∈ ((0...𝐽) ↑𝑚 𝑅)) |
435 | | elmapi 8164 |
. . . . . . . . . . . . . . . . . . 19
⊢
((2nd ‘𝑝) ∈ ((0...𝐽) ↑𝑚 𝑅) → (2nd
‘𝑝):𝑅⟶(0...𝐽)) |
436 | 434, 435 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝):𝑅⟶(0...𝐽)) |
437 | 436 | 3exp 1109 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝):𝑅⟶(0...𝐽)))) |
438 | 437 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝):𝑅⟶(0...𝐽)))) |
439 | 400, 423,
438 | rexlimd 3208 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (2nd ‘𝑝):𝑅⟶(0...𝐽))) |
440 | 395, 439 | mpd 15 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (2nd ‘𝑝):𝑅⟶(0...𝐽)) |
441 | 440 | ffvelrnda 6625 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽)) |
442 | | elfznn0 12756 |
. . . . . . . . . . . . . . 15
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → ((2nd ‘𝑝)‘𝑡) ∈
ℕ0) |
443 | 442 | faccld 13395 |
. . . . . . . . . . . . . 14
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℕ) |
444 | 443 | nncnd 11397 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℂ) |
445 | 441, 444 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℂ) |
446 | 422, 445 | fprodcl 15094 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ∈ ℂ) |
447 | 446 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ∈ ℂ) |
448 | 441, 443 | syl 17 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (!‘((2nd
‘𝑝)‘𝑡)) ∈
ℕ) |
449 | | nnne0 11415 |
. . . . . . . . . . . . 13
⊢
((!‘((2nd ‘𝑝)‘𝑡)) ∈ ℕ →
(!‘((2nd ‘𝑝)‘𝑡)) ≠ 0) |
450 | 448, 449 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (!‘((2nd
‘𝑝)‘𝑡)) ≠ 0) |
451 | 422, 445,
450 | fprodn0 15121 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ≠ 0) |
452 | 451 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡)) ≠ 0) |
453 | 421, 447,
452 | divcld 11154 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) ∈ ℂ) |
454 | 7 | adantr 474 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑅 ∈ Fin) |
455 | | simpll 757 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 𝜑) |
456 | 455, 13 | sylancom 582 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
457 | 455, 133 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (0...𝐽) ⊆ (0...𝑁)) |
458 | 457, 441 | sseldd 3822 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)) |
459 | 455, 456,
458 | 3jca 1119 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁))) |
460 | | eleq1 2847 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → (𝑗 ∈ (0...𝑁) ↔ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁))) |
461 | 460 | 3anbi3d 1515 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)))) |
462 | | fveq2 6448 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))) |
463 | 462 | feq1d 6278 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ)) |
464 | 461, 463 | imbi12d 336 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = ((2nd ‘𝑝)‘𝑡) → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ))) |
465 | 464, 145 | vtoclg 3467 |
. . . . . . . . . . . . 13
⊢
(((2nd ‘𝑝)‘𝑡) ∈ (0...𝐽) → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ ((2nd ‘𝑝)‘𝑡) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ)) |
466 | 441, 459,
465 | sylc 65 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ) |
467 | 466 | adantllr 709 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡)):𝑋⟶ℂ) |
468 | 17 | adantlr 705 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
469 | 467, 468 | ffvelrnd 6626 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) ∧ 𝑡 ∈ 𝑅) → (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) ∈ ℂ) |
470 | 454, 469 | fprodcl 15094 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥) ∈ ℂ) |
471 | 453, 470 | mulcld 10399 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) ∈ ℂ) |
472 | | nfv 1957 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘(𝐽 − (1st
‘𝑝)) ∈
(0...𝐽) |
473 | | simp1 1127 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝜑) |
474 | 407 | 3adant1 1121 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (1st ‘𝑝) ∈ (0...𝐽)) |
475 | | fznn0sub2 12770 |
. . . . . . . . . . . . . . . . 17
⊢
((1st ‘𝑝) ∈ (0...𝐽) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
476 | 475 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (1st
‘𝑝) ∈ (0...𝐽)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
477 | 473, 474,
476 | syl2anc 579 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝐽) ∧ 𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
478 | 477 | 3exp 1109 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)))) |
479 | 478 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝑘 ∈ (0...𝐽) → (𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)))) |
480 | 400, 472,
479 | rexlimd 3208 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (∃𝑘 ∈ (0...𝐽)𝑝 ∈ ({𝑘} × ((𝐶‘𝑅)‘𝑘)) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽))) |
481 | 395, 480 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝐽)) |
482 | | simpl 476 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝜑) |
483 | 482, 23 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑍 ∈ 𝑇) |
484 | 482, 133 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (0...𝐽) ⊆ (0...𝑁)) |
485 | 484, 481 | sseldd 3822 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)) |
486 | 482, 483,
485 | 3jca 1119 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁))) |
487 | | eleq1 2847 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → (𝑗 ∈ (0...𝑁) ↔ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁))) |
488 | 487 | 3anbi3d 1515 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)))) |
489 | | fveq2 6448 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))) |
490 | 489 | feq1d 6278 |
. . . . . . . . . . . . 13
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ)) |
491 | 488, 490 | imbi12d 336 |
. . . . . . . . . . . 12
⊢ (𝑗 = (𝐽 − (1st ‘𝑝)) → (((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ))) |
492 | | simp2 1128 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → 𝑍 ∈ 𝑇) |
493 | | id 22 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁))) |
494 | 26 | 3anbi2d 1514 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑍 → ((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)))) |
495 | 182 | fveq1d 6450 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 = 𝑍 → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗)) |
496 | 495 | feq1d 6278 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑍 → (((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ)) |
497 | 494, 496 | imbi12d 336 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑍 → (((𝜑 ∧ 𝑡 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑡))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ))) |
498 | 497, 145 | vtoclg 3467 |
. . . . . . . . . . . . 13
⊢ (𝑍 ∈ 𝑇 → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ)) |
499 | 492, 493,
498 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) |
500 | 491, 499 | vtoclg 3467 |
. . . . . . . . . . 11
⊢ ((𝐽 − (1st
‘𝑝)) ∈
(0...𝐽) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝐽 − (1st ‘𝑝)) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ)) |
501 | 481, 486,
500 | sylc 65 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ) |
502 | 501 | adantlr 705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝))):𝑋⟶ℂ) |
503 | 34 | adantr 474 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → 𝑥 ∈ 𝑋) |
504 | 502, 503 | ffvelrnd 6626 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥) ∈ ℂ) |
505 | 471, 504 | mulcld 10399 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥)) ∈ ℂ) |
506 | 416, 505 | mulcld 10399 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))) → ((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) ∈ ℂ) |
507 | 340, 382,
385, 391, 506 | fsumf1o 14870 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)))) |
508 | | simpl 476 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝜑) |
509 | 369 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽) = {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
510 | 386, 509 | eleqtrd 2861 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽}) |
511 | 377 | sseli 3817 |
. . . . . . . . . . . . . . 15
⊢ (𝑐 ∈ {𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) ∣ Σ𝑡 ∈ (𝑅 ∪ {𝑍})(𝑐‘𝑡) = 𝐽} → 𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍}))) |
512 | 510, 511 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍}))) |
513 | | elmapi 8164 |
. . . . . . . . . . . . . 14
⊢ (𝑐 ∈ ((0...𝐽) ↑𝑚 (𝑅 ∪ {𝑍})) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
514 | 512, 513 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
515 | | snidg 4428 |
. . . . . . . . . . . . . . . 16
⊢ (𝑍 ∈ 𝑇 → 𝑍 ∈ {𝑍}) |
516 | 23, 515 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝑍 ∈ {𝑍}) |
517 | | elun2 4004 |
. . . . . . . . . . . . . . 15
⊢ (𝑍 ∈ {𝑍} → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
518 | 516, 517 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
519 | 518 | adantr 474 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ (𝑅 ∪ {𝑍})) |
520 | 514, 519 | ffvelrnd 6626 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ (0...𝐽)) |
521 | | 0zd 11745 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 0 ∈ ℤ) |
522 | 124 | adantr 474 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 𝐽 ∈ ℤ) |
523 | | fzssz 12665 |
. . . . . . . . . . . . . . . . . 18
⊢
(0...𝐽) ⊆
ℤ |
524 | 523 | sseli 3817 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → (𝑐‘𝑍) ∈ ℤ) |
525 | 524 | adantl 475 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝑐‘𝑍) ∈ ℤ) |
526 | 522, 525 | zsubcld 11844 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ ℤ) |
527 | 521, 522,
526 | 3jca 1119 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − (𝑐‘𝑍)) ∈ ℤ)) |
528 | | elfzle2 12667 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → (𝑐‘𝑍) ≤ 𝐽) |
529 | 528 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝑐‘𝑍) ≤ 𝐽) |
530 | 164 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 𝐽 ∈ ℝ) |
531 | 525 | zred 11839 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝑐‘𝑍) ∈ ℝ) |
532 | 530, 531 | subge0d 10968 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (0 ≤ (𝐽 − (𝑐‘𝑍)) ↔ (𝑐‘𝑍) ≤ 𝐽)) |
533 | 529, 532 | mpbird 249 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 0 ≤ (𝐽 − (𝑐‘𝑍))) |
534 | | elfzle1 12666 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → 0 ≤ (𝑐‘𝑍)) |
535 | 534 | adantl 475 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → 0 ≤ (𝑐‘𝑍)) |
536 | 530, 531 | subge02d 10970 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (0 ≤ (𝑐‘𝑍) ↔ (𝐽 − (𝑐‘𝑍)) ≤ 𝐽)) |
537 | 535, 536 | mpbid 224 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝐽 − (𝑐‘𝑍)) ≤ 𝐽) |
538 | 527, 533,
537 | jca32 511 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − (𝑐‘𝑍)) ∈ ℤ) ∧ (0 ≤ (𝐽 − (𝑐‘𝑍)) ∧ (𝐽 − (𝑐‘𝑍)) ≤ 𝐽))) |
539 | | elfz2 12655 |
. . . . . . . . . . . . 13
⊢ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) ↔ ((0 ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐽 − (𝑐‘𝑍)) ∈ ℤ) ∧ (0 ≤ (𝐽 − (𝑐‘𝑍)) ∧ (𝐽 − (𝑐‘𝑍)) ≤ 𝐽))) |
540 | 538, 539 | sylibr 226 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ (𝑐‘𝑍) ∈ (0...𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽)) |
541 | 508, 520,
540 | syl2anc 579 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽)) |
542 | | bcval2 13416 |
. . . . . . . . . . 11
⊢ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) → (𝐽C(𝐽 − (𝑐‘𝑍))) = ((!‘𝐽) / ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
543 | 541, 542 | syl 17 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽C(𝐽 − (𝑐‘𝑍))) = ((!‘𝐽) / ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
544 | 164 | recnd 10407 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐽 ∈ ℂ) |
545 | 544 | adantr 474 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝐽 ∈ ℂ) |
546 | | zsscn 11741 |
. . . . . . . . . . . . . . . . 17
⊢ ℤ
⊆ ℂ |
547 | 523, 546 | sstri 3830 |
. . . . . . . . . . . . . . . 16
⊢
(0...𝐽) ⊆
ℂ |
548 | 547 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0...𝐽) ⊆ ℂ) |
549 | 548, 520 | sseldd 3822 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ ℂ) |
550 | 545, 549 | nncand 10741 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝐽 − (𝑐‘𝑍))) = (𝑐‘𝑍)) |
551 | 550 | fveq2d 6452 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) = (!‘(𝑐‘𝑍))) |
552 | 551 | oveq1d 6939 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍)))) = ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍))))) |
553 | 552 | oveq2d 6940 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘𝐽) / ((!‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) · (!‘(𝐽 − (𝑐‘𝑍))))) = ((!‘𝐽) / ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
554 | 45 | faccld 13395 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → (!‘𝐽) ∈ ℕ) |
555 | 554 | nncnd 11397 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (!‘𝐽) ∈ ℂ) |
556 | 555 | adantr 474 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘𝐽) ∈ ℂ) |
557 | | elfznn0 12756 |
. . . . . . . . . . . . . . 15
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → (𝑐‘𝑍) ∈
ℕ0) |
558 | 520, 557 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈
ℕ0) |
559 | 558 | faccld 13395 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ∈ ℕ) |
560 | 559 | nncnd 11397 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ∈ ℂ) |
561 | | elfznn0 12756 |
. . . . . . . . . . . . . . 15
⊢ ((𝐽 − (𝑐‘𝑍)) ∈ (0...𝐽) → (𝐽 − (𝑐‘𝑍)) ∈
ℕ0) |
562 | 541, 561 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽 − (𝑐‘𝑍)) ∈
ℕ0) |
563 | 562 | faccld 13395 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ∈ ℕ) |
564 | 563 | nncnd 11397 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ∈ ℂ) |
565 | 559 | nnne0d 11430 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ≠ 0) |
566 | 563 | nnne0d 11430 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ≠ 0) |
567 | 556, 560,
564, 565, 566 | divdiv1d 11185 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍)))) = ((!‘𝐽) / ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍)))))) |
568 | 567 | eqcomd 2784 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘𝐽) / ((!‘(𝑐‘𝑍)) · (!‘(𝐽 − (𝑐‘𝑍))))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍))))) |
569 | 543, 553,
568 | 3eqtrd 2818 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽C(𝐽 − (𝑐‘𝑍))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍))))) |
570 | 569 | adantlr 705 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝐽C(𝐽 − (𝑐‘𝑍))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍))))) |
571 | | fvres 6467 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑡 ∈ 𝑅 → ((𝑐 ↾ 𝑅)‘𝑡) = (𝑐‘𝑡)) |
572 | 571 | fveq2d 6452 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝑅 → (!‘((𝑐 ↾ 𝑅)‘𝑡)) = (!‘(𝑐‘𝑡))) |
573 | 572 | prodeq2i 15061 |
. . . . . . . . . . . . . . 15
⊢
∏𝑡 ∈
𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡)) = ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) |
574 | 573 | oveq2i 6935 |
. . . . . . . . . . . . . 14
⊢
((!‘(𝐽 −
(𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) = ((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) |
575 | 571 | fveq2d 6452 |
. . . . . . . . . . . . . . . 16
⊢ (𝑡 ∈ 𝑅 → ((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))) |
576 | 575 | fveq1d 6450 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 ∈ 𝑅 → (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
577 | 576 | prodeq2i 15061 |
. . . . . . . . . . . . . 14
⊢
∏𝑡 ∈
𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥) = ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) |
578 | 574, 577 | oveq12i 6936 |
. . . . . . . . . . . . 13
⊢
(((!‘(𝐽
− (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
579 | 578 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
580 | 579 | adantlr 705 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
581 | 564 | adantlr 705 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ∈ ℂ) |
582 | 508, 6 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ∈ Fin) |
583 | 75 | ssriv 3825 |
. . . . . . . . . . . . . . . . . 18
⊢
(0...𝐽) ⊆
ℕ0 |
584 | 583 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (0...𝐽) ⊆
ℕ0) |
585 | 514 | adantr 474 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝐽)) |
586 | | elun1 4003 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑡 ∈ 𝑅 → 𝑡 ∈ (𝑅 ∪ {𝑍})) |
587 | 586 | adantl 475 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ (𝑅 ∪ {𝑍})) |
588 | 585, 587 | ffvelrnd 6626 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝐽)) |
589 | 584, 588 | sseldd 3822 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈
ℕ0) |
590 | 589 | faccld 13395 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℕ) |
591 | 590 | nncnd 11397 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (!‘(𝑐‘𝑡)) ∈ ℂ) |
592 | 582, 591 | fprodcl 15094 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℂ) |
593 | 592 | adantlr 705 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℂ) |
594 | 7 | adantr 474 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑅 ∈ Fin) |
595 | 508 | adantr 474 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝜑) |
596 | 508, 13 | sylan 575 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑡 ∈ 𝑇) |
597 | 595, 133 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (0...𝐽) ⊆ (0...𝑁)) |
598 | 597, 588 | sseldd 3822 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (𝑐‘𝑡) ∈ (0...𝑁)) |
599 | 595, 596,
598, 146 | syl3anc 1439 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
600 | 599 | adantllr 709 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
601 | 17 | adantlr 705 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → 𝑥 ∈ 𝑋) |
602 | 600, 601 | ffvelrnd 6626 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ 𝑅) → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
603 | 594, 602 | fprodcl 15094 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
604 | 582, 590 | fprodnncl 15097 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ∈ ℕ) |
605 | | nnne0 11415 |
. . . . . . . . . . . . . 14
⊢
(∏𝑡 ∈
𝑅 (!‘(𝑐‘𝑡)) ∈ ℕ → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
606 | 604, 605 | syl 17 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
607 | 606 | adantlr 705 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) ≠ 0) |
608 | 581, 593,
603, 607 | div32d 11177 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
609 | 580, 608 | eqtrd 2814 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
610 | 550 | fveq2d 6452 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍)))) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))) |
611 | 610 | fveq1d 6450 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) |
612 | 611 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) |
613 | 609, 612 | oveq12d 6942 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)) = (((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) |
614 | 603, 593,
607 | divcld 11154 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) ∈ ℂ) |
615 | 508, 23 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ 𝑇) |
616 | 508, 133 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (0...𝐽) ⊆ (0...𝑁)) |
617 | 616, 520 | sseldd 3822 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑐‘𝑍) ∈ (0...𝑁)) |
618 | 508, 615,
617 | 3jca 1119 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁))) |
619 | | eleq1 2847 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑐‘𝑍) → (𝑗 ∈ (0...𝑁) ↔ (𝑐‘𝑍) ∈ (0...𝑁))) |
620 | 619 | 3anbi3d 1515 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑐‘𝑍) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) ↔ (𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁)))) |
621 | | fveq2 6448 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = (𝑐‘𝑍) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))) |
622 | 621 | feq1d 6278 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 = (𝑐‘𝑍) → (((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ ↔ ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ)) |
623 | 620, 622 | imbi12d 336 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = (𝑐‘𝑍) → (((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ 𝑗 ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘𝑗):𝑋⟶ℂ) ↔ ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ))) |
624 | 623, 499 | vtoclg 3467 |
. . . . . . . . . . . . 13
⊢ ((𝑐‘𝑍) ∈ (0...𝐽) → ((𝜑 ∧ 𝑍 ∈ 𝑇 ∧ (𝑐‘𝑍) ∈ (0...𝑁)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ)) |
625 | 520, 618,
624 | sylc 65 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ) |
626 | 625 | adantlr 705 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍)):𝑋⟶ℂ) |
627 | 34 | adantr 474 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑥 ∈ 𝑋) |
628 | 626, 627 | ffvelrnd 6626 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥) ∈ ℂ) |
629 | 581, 614,
628 | mulassd 10402 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘(𝐽 − (𝑐‘𝑍))) · (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) |
630 | 613, 629 | eqtrd 2814 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥)) = ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) |
631 | 570, 630 | oveq12d 6942 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) = ((((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍)))) · ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))))) |
632 | 555 | ad2antrr 716 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘𝐽) ∈ ℂ) |
633 | 560 | adantlr 705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ∈ ℂ) |
634 | 565 | adantlr 705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝑐‘𝑍)) ≠ 0) |
635 | 632, 633,
634 | divcld 11154 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘𝐽) / (!‘(𝑐‘𝑍))) ∈ ℂ) |
636 | 614, 628 | mulcld 10399 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) ∈ ℂ) |
637 | 566 | adantlr 705 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (!‘(𝐽 − (𝑐‘𝑍))) ≠ 0) |
638 | 635, 581,
636, 637 | dmmcand 40450 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((((!‘𝐽) / (!‘(𝑐‘𝑍))) / (!‘(𝐽 − (𝑐‘𝑍)))) · ((!‘(𝐽 − (𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)))) |
639 | 603, 628,
593, 607 | div23d 11191 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) |
640 | 639 | eqcomd 2784 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
641 | | nfv 1957 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
642 | | nfcv 2934 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑡(((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥) |
643 | 615 | adantlr 705 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑍 ∈ 𝑇) |
644 | 11 | adantr 474 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ¬ 𝑍 ∈ 𝑅) |
645 | | fveq2 6448 |
. . . . . . . . . . . . . . 15
⊢ (𝑡 = 𝑍 → (𝑐‘𝑡) = (𝑐‘𝑍)) |
646 | 182, 645 | fveq12d 6455 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑍 → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)) = ((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))) |
647 | 646 | fveq1d 6450 |
. . . . . . . . . . . . 13
⊢ (𝑡 = 𝑍 → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) |
648 | 641, 642,
594, 643, 644, 602, 647, 628 | fprodsplitsn 15131 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) = (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) |
649 | 648 | eqcomd 2784 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) |
650 | 649 | oveq1d 6939 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
651 | 640, 650 | eqtrd 2814 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥)) = (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) |
652 | 651 | oveq2d 6940 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) = (((!‘𝐽) / (!‘(𝑐‘𝑍))) · (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
653 | 594, 371,
373 | sylancl 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑅 ∪ {𝑍}) ∈ Fin) |
654 | 508 | adantr 474 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝜑) |
655 | 350 | sselda 3821 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝑡 ∈ 𝑇) |
656 | 655 | adantlr 705 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝑡 ∈ 𝑇) |
657 | 514, 616 | fssd 6307 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → 𝑐:(𝑅 ∪ {𝑍})⟶(0...𝑁)) |
658 | 657 | ffvelrnda 6625 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑐‘𝑡) ∈ (0...𝑁)) |
659 | 654, 656,
658, 146 | syl3anc 1439 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
660 | 659 | adantllr 709 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → ((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡)):𝑋⟶ℂ) |
661 | 627 | adantr 474 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → 𝑥 ∈ 𝑋) |
662 | 660, 661 | ffvelrnd 6626 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
663 | 653, 662 | fprodcl 15094 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) ∈ ℂ) |
664 | 632, 633,
663, 593, 634, 607 | divmuldivd 11195 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) · (∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))))) |
665 | 560, 592 | mulcomd 10400 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = (∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) · (!‘(𝑐‘𝑍)))) |
666 | | nfv 1957 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) |
667 | | nfcv 2934 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑡(!‘(𝑐‘𝑍)) |
668 | 508, 10 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ¬ 𝑍 ∈ 𝑅) |
669 | 645 | fveq2d 6452 |
. . . . . . . . . . . . . 14
⊢ (𝑡 = 𝑍 → (!‘(𝑐‘𝑡)) = (!‘(𝑐‘𝑍))) |
670 | 666, 667,
582, 615, 668, 591, 669, 560 | fprodsplitsn 15131 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) = (∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) · (!‘(𝑐‘𝑍)))) |
671 | 670 | eqcomd 2784 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)) · (!‘(𝑐‘𝑍))) = ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) |
672 | 665, 671 | eqtrd 2814 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) = ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) |
673 | 672 | oveq2d 6940 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)))) |
674 | 673 | adantlr 705 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)))) |
675 | 508, 374 | syl 17 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (𝑅 ∪ {𝑍}) ∈ Fin) |
676 | 583 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (0...𝐽) ⊆
ℕ0) |
677 | 514 | ffvelrnda 6625 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑐‘𝑡) ∈ (0...𝐽)) |
678 | 676, 677 | sseldd 3822 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (𝑐‘𝑡) ∈
ℕ0) |
679 | 678 | faccld 13395 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (!‘(𝑐‘𝑡)) ∈ ℕ) |
680 | 679 | nncnd 11397 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (!‘(𝑐‘𝑡)) ∈ ℂ) |
681 | 675, 680 | fprodcl 15094 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ∈ ℂ) |
682 | 681 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ∈ ℂ) |
683 | 679 | nnne0d 11430 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) ∧ 𝑡 ∈ (𝑅 ∪ {𝑍})) → (!‘(𝑐‘𝑡)) ≠ 0) |
684 | 675, 680,
683 | fprodn0 15121 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ≠ 0) |
685 | 684 | adantlr 705 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡)) ≠ 0) |
686 | 632, 663,
682, 685 | div23d 11191 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
687 | | eqidd 2779 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
688 | 674, 686,
687 | 3eqtrd 2818 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)) / ((!‘(𝑐‘𝑍)) · ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡)))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
689 | 652, 664,
688 | 3eqtrd 2818 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → (((!‘𝐽) / (!‘(𝑐‘𝑍))) · ((∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥) / ∏𝑡 ∈ 𝑅 (!‘(𝑐‘𝑡))) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝑐‘𝑍))‘𝑥))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
690 | 631, 638,
689 | 3eqtrd 2818 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑥 ∈ 𝑋) ∧ 𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)) → ((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) = (((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
691 | 690 | sumeq2dv 14850 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)((𝐽C(𝐽 − (𝑐‘𝑍))) · ((((!‘(𝐽 − (𝑐‘𝑍))) / ∏𝑡 ∈ 𝑅 (!‘((𝑐 ↾ 𝑅)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((𝑐 ↾ 𝑅)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (𝐽 − (𝑐‘𝑍))))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
692 | 507, 691 | eqtrd 2814 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑝 ∈ ∪
𝑘 ∈ (0...𝐽)({𝑘} × ((𝐶‘𝑅)‘𝑘))((𝐽C(1st ‘𝑝)) · ((((!‘(1st
‘𝑝)) / ∏𝑡 ∈ 𝑅 (!‘((2nd ‘𝑝)‘𝑡))) · ∏𝑡 ∈ 𝑅 (((𝑆 D𝑛 (𝐻‘𝑡))‘((2nd ‘𝑝)‘𝑡))‘𝑥)) · (((𝑆 D𝑛 (𝐻‘𝑍))‘(𝐽 − (1st ‘𝑝)))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
693 | 297, 321,
692 | 3eqtrd 2818 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥))) = Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥))) |
694 | 693 | mpteq2dva 4981 |
. 2
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ Σ𝑘 ∈ (0...𝐽)((𝐽C𝑘) · ((((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ∏𝑡 ∈ 𝑅 ((𝐻‘𝑡)‘𝑦)))‘𝑘))‘𝑘)‘𝑥) · (((𝑘 ∈ (0...𝐽) ↦ ((𝑆 D𝑛 (𝑦 ∈ 𝑋 ↦ ((𝐻‘𝑍)‘𝑦)))‘𝑘))‘(𝐽 − 𝑘))‘𝑥)))) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |
695 | 39, 212, 694 | 3eqtrd 2818 |
1
⊢ (𝜑 → ((𝑆 D𝑛 (𝑥 ∈ 𝑋 ↦ ∏𝑡 ∈ (𝑅 ∪ {𝑍})((𝐻‘𝑡)‘𝑥)))‘𝐽) = (𝑥 ∈ 𝑋 ↦ Σ𝑐 ∈ ((𝐶‘(𝑅 ∪ {𝑍}))‘𝐽)(((!‘𝐽) / ∏𝑡 ∈ (𝑅 ∪ {𝑍})(!‘(𝑐‘𝑡))) · ∏𝑡 ∈ (𝑅 ∪ {𝑍})(((𝑆 D𝑛 (𝐻‘𝑡))‘(𝑐‘𝑡))‘𝑥)))) |