MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmbrf Structured version   Visualization version   GIF version

Theorem lmbrf 23123
Description: Express the binary relation "sequence 𝐹 converges to point 𝑃 " in a metric space using an arbitrary upper set of integers. This version of lmbr2 23122 presupposes that 𝐹 is a function. (Contributed by Mario Carneiro, 14-Nov-2013.)
Hypotheses
Ref Expression
lmbr.2 (𝜑𝐽 ∈ (TopOn‘𝑋))
lmbr2.4 𝑍 = (ℤ𝑀)
lmbr2.5 (𝜑𝑀 ∈ ℤ)
lmbrf.6 (𝜑𝐹:𝑍𝑋)
lmbrf.7 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
Assertion
Ref Expression
lmbrf (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐴𝑢))))
Distinct variable groups:   𝑗,𝑘,𝑢,𝐹   𝑗,𝐽,𝑘,𝑢   𝜑,𝑗,𝑘,𝑢   𝑗,𝑍,𝑘,𝑢   𝑗,𝑀   𝑃,𝑗,𝑘,𝑢   𝑗,𝑋,𝑘,𝑢
Allowed substitution hints:   𝐴(𝑢,𝑗,𝑘)   𝑀(𝑢,𝑘)

Proof of Theorem lmbrf
StepHypRef Expression
1 lmbr.2 . . 3 (𝜑𝐽 ∈ (TopOn‘𝑋))
2 lmbr2.4 . . 3 𝑍 = (ℤ𝑀)
3 lmbr2.5 . . 3 (𝜑𝑀 ∈ ℤ)
41, 2, 3lmbr2 23122 . 2 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
5 3anass 1094 . . 3 ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
62uztrn2 12788 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
7 lmbrf.7 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
87eleq1d 2813 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢𝐴𝑢))
9 lmbrf.6 . . . . . . . . . . . . . . . 16 (𝜑𝐹:𝑍𝑋)
109fdmd 6680 . . . . . . . . . . . . . . 15 (𝜑 → dom 𝐹 = 𝑍)
1110eleq2d 2814 . . . . . . . . . . . . . 14 (𝜑 → (𝑘 ∈ dom 𝐹𝑘𝑍))
1211biimpar 477 . . . . . . . . . . . . 13 ((𝜑𝑘𝑍) → 𝑘 ∈ dom 𝐹)
1312biantrurd 532 . . . . . . . . . . . 12 ((𝜑𝑘𝑍) → ((𝐹𝑘) ∈ 𝑢 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
148, 13bitr3d 281 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐴𝑢 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
156, 14sylan2 593 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐴𝑢 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1615anassrs 467 . . . . . . . . 9 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → (𝐴𝑢 ↔ (𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1716ralbidva 3154 . . . . . . . 8 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)𝐴𝑢 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1817rexbidva 3155 . . . . . . 7 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐴𝑢 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))
1918imbi2d 340 . . . . . 6 (𝜑 → ((𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐴𝑢) ↔ (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2019ralbidv 3156 . . . . 5 (𝜑 → (∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐴𝑢) ↔ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))
2120anbi2d 630 . . . 4 (𝜑 → ((𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐴𝑢)) ↔ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))))
22 toponmax 22789 . . . . . . . 8 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
231, 22syl 17 . . . . . . 7 (𝜑𝑋𝐽)
24 cnex 11125 . . . . . . 7 ℂ ∈ V
2523, 24jctir 520 . . . . . 6 (𝜑 → (𝑋𝐽 ∧ ℂ ∈ V))
26 uzssz 12790 . . . . . . . . 9 (ℤ𝑀) ⊆ ℤ
27 zsscn 12513 . . . . . . . . 9 ℤ ⊆ ℂ
2826, 27sstri 3953 . . . . . . . 8 (ℤ𝑀) ⊆ ℂ
292, 28eqsstri 3990 . . . . . . 7 𝑍 ⊆ ℂ
309, 29jctir 520 . . . . . 6 (𝜑 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
31 elpm2r 8795 . . . . . 6 (((𝑋𝐽 ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
3225, 30, 31syl2anc 584 . . . . 5 (𝜑𝐹 ∈ (𝑋pm ℂ))
3332biantrurd 532 . . . 4 (𝜑 → ((𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))))))
3421, 33bitr2d 280 . . 3 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢)))) ↔ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐴𝑢))))
355, 34bitrid 283 . 2 (𝜑 → ((𝐹 ∈ (𝑋pm ℂ) ∧ 𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹 ∧ (𝐹𝑘) ∈ 𝑢))) ↔ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐴𝑢))))
364, 35bitrd 279 1 (𝜑 → (𝐹(⇝𝑡𝐽)𝑃 ↔ (𝑃𝑋 ∧ ∀𝑢𝐽 (𝑃𝑢 → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)𝐴𝑢))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  wss 3911   class class class wbr 5102  dom cdm 5631  wf 6495  cfv 6499  (class class class)co 7369  pm cpm 8777  cc 11042  cz 12505  cuz 12769  TopOnctopon 22773  𝑡clm 23089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-pre-lttri 11118  ax-pre-lttrn 11119
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-er 8648  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-neg 11384  df-z 12506  df-uz 12770  df-top 22757  df-topon 22774  df-lm 23092
This theorem is referenced by:  lmconst  23124  lmss  23161  1stcelcls  23324  txlm  23511  lmflf  23868  lmxrge0  33915
  Copyright terms: Public domain W3C validator