MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscauf Structured version   Visualization version   GIF version

Theorem iscauf 24131
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " presupposing 𝐹 is a function. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
iscau4.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iscau4.6 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
iscauf.7 (𝜑𝐹:𝑍𝑋)
Assertion
Ref Expression
iscauf (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐵(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem iscauf
StepHypRef Expression
1 iscau3.3 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 elfvdm 6727 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
31, 2syl 17 . . . . 5 (𝜑𝑋 ∈ dom ∞Met)
4 cnex 10775 . . . . 5 ℂ ∈ V
53, 4jctir 524 . . . 4 (𝜑 → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
6 iscauf.7 . . . . 5 (𝜑𝐹:𝑍𝑋)
7 iscau3.2 . . . . . 6 𝑍 = (ℤ𝑀)
8 uzssz 12424 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
9 zsscn 12149 . . . . . . 7 ℤ ⊆ ℂ
108, 9sstri 3896 . . . . . 6 (ℤ𝑀) ⊆ ℂ
117, 10eqsstri 3921 . . . . 5 𝑍 ⊆ ℂ
126, 11jctir 524 . . . 4 (𝜑 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
13 elpm2r 8504 . . . 4 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
145, 12, 13syl2anc 587 . . 3 (𝜑𝐹 ∈ (𝑋pm ℂ))
1514biantrurd 536 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
161adantr 484 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐷 ∈ (∞Met‘𝑋))
17 iscau4.6 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
1817adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) = 𝐵)
196adantr 484 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐹:𝑍𝑋)
20 simprl 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑗𝑍)
2119, 20ffvelrnd 6883 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ 𝑋)
2218, 21eqeltrrd 2832 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐵𝑋)
237uztrn2 12422 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
24 iscau4.5 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
2523, 24sylan2 596 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) = 𝐴)
26 ffvelrn 6880 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
276, 23, 26syl2an 599 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ 𝑋)
2825, 27eqeltrrd 2832 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐴𝑋)
29 xmetsym 23199 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3016, 22, 28, 29syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3130breq1d 5049 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝐴𝐷𝐵) < 𝑥))
32 fdm 6532 . . . . . . . . . . . . 13 (𝐹:𝑍𝑋 → dom 𝐹 = 𝑍)
3332eleq2d 2816 . . . . . . . . . . . 12 (𝐹:𝑍𝑋 → (𝑘 ∈ dom 𝐹𝑘𝑍))
3433biimpar 481 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → 𝑘 ∈ dom 𝐹)
356, 23, 34syl2an 599 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ dom 𝐹)
3635, 28jca 515 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑘 ∈ dom 𝐹𝐴𝑋))
3736biantrurd 536 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐴𝐷𝐵) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹𝐴𝑋) ∧ (𝐴𝐷𝐵) < 𝑥)))
38 df-3an 1091 . . . . . . . 8 ((𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹𝐴𝑋) ∧ (𝐴𝐷𝐵) < 𝑥))
3937, 38bitr4di 292 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐴𝐷𝐵) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4031, 39bitrd 282 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4140anassrs 471 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4241ralbidva 3107 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4342rexbidva 3205 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4443ralbidv 3108 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
45 iscau3.4 . . 3 (𝜑𝑀 ∈ ℤ)
467, 1, 45, 24, 17iscau4 24130 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
4715, 44, 463bitr4rd 315 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2112  wral 3051  wrex 3052  Vcvv 3398  wss 3853   class class class wbr 5039  dom cdm 5536  wf 6354  cfv 6358  (class class class)co 7191  pm cpm 8487  cc 10692   < clt 10832  cz 12141  cuz 12403  +crp 12551  ∞Metcxmet 20302  Cauccau 24104
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-id 5440  df-po 5453  df-so 5454  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-1st 7739  df-2nd 7740  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-2 11858  df-z 12142  df-uz 12404  df-rp 12552  df-xneg 12669  df-xadd 12670  df-psmet 20309  df-xmet 20310  df-bl 20312  df-cau 24107
This theorem is referenced by:  iscmet3lem1  24142  causs  24149  caubl  24159  minvecolem3  28911  h2hcau  29014  geomcau  35603  caushft  35605  rrncmslem  35676
  Copyright terms: Public domain W3C validator