MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscauf Structured version   Visualization version   GIF version

Theorem iscauf 24349
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " presupposing 𝐹 is a function. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
iscau4.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iscau4.6 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
iscauf.7 (𝜑𝐹:𝑍𝑋)
Assertion
Ref Expression
iscauf (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐵(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem iscauf
StepHypRef Expression
1 iscau3.3 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 elfvdm 6788 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
31, 2syl 17 . . . . 5 (𝜑𝑋 ∈ dom ∞Met)
4 cnex 10883 . . . . 5 ℂ ∈ V
53, 4jctir 520 . . . 4 (𝜑 → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
6 iscauf.7 . . . . 5 (𝜑𝐹:𝑍𝑋)
7 iscau3.2 . . . . . 6 𝑍 = (ℤ𝑀)
8 uzssz 12532 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
9 zsscn 12257 . . . . . . 7 ℤ ⊆ ℂ
108, 9sstri 3926 . . . . . 6 (ℤ𝑀) ⊆ ℂ
117, 10eqsstri 3951 . . . . 5 𝑍 ⊆ ℂ
126, 11jctir 520 . . . 4 (𝜑 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
13 elpm2r 8591 . . . 4 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
145, 12, 13syl2anc 583 . . 3 (𝜑𝐹 ∈ (𝑋pm ℂ))
1514biantrurd 532 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
161adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐷 ∈ (∞Met‘𝑋))
17 iscau4.6 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
1817adantrr 713 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) = 𝐵)
196adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐹:𝑍𝑋)
20 simprl 767 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑗𝑍)
2119, 20ffvelrnd 6944 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ 𝑋)
2218, 21eqeltrrd 2840 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐵𝑋)
237uztrn2 12530 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
24 iscau4.5 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
2523, 24sylan2 592 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) = 𝐴)
26 ffvelrn 6941 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
276, 23, 26syl2an 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ 𝑋)
2825, 27eqeltrrd 2840 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐴𝑋)
29 xmetsym 23408 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3016, 22, 28, 29syl3anc 1369 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3130breq1d 5080 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝐴𝐷𝐵) < 𝑥))
32 fdm 6593 . . . . . . . . . . . . 13 (𝐹:𝑍𝑋 → dom 𝐹 = 𝑍)
3332eleq2d 2824 . . . . . . . . . . . 12 (𝐹:𝑍𝑋 → (𝑘 ∈ dom 𝐹𝑘𝑍))
3433biimpar 477 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → 𝑘 ∈ dom 𝐹)
356, 23, 34syl2an 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ dom 𝐹)
3635, 28jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑘 ∈ dom 𝐹𝐴𝑋))
3736biantrurd 532 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐴𝐷𝐵) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹𝐴𝑋) ∧ (𝐴𝐷𝐵) < 𝑥)))
38 df-3an 1087 . . . . . . . 8 ((𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹𝐴𝑋) ∧ (𝐴𝐷𝐵) < 𝑥))
3937, 38bitr4di 288 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐴𝐷𝐵) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4031, 39bitrd 278 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4140anassrs 467 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4241ralbidva 3119 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4342rexbidva 3224 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4443ralbidv 3120 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
45 iscau3.4 . . 3 (𝜑𝑀 ∈ ℤ)
467, 1, 45, 24, 17iscau4 24348 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
4715, 44, 463bitr4rd 311 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  wss 3883   class class class wbr 5070  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  pm cpm 8574  cc 10800   < clt 10940  cz 12249  cuz 12511  +crp 12659  ∞Metcxmet 20495  Cauccau 24322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-1st 7804  df-2nd 7805  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-2 11966  df-z 12250  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-psmet 20502  df-xmet 20503  df-bl 20505  df-cau 24325
This theorem is referenced by:  iscmet3lem1  24360  causs  24367  caubl  24377  minvecolem3  29139  h2hcau  29242  geomcau  35844  caushft  35846  rrncmslem  35917
  Copyright terms: Public domain W3C validator