MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscauf Structured version   Visualization version   GIF version

Theorem iscauf 25333
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " presupposing 𝐹 is a function. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
iscau4.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iscau4.6 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
iscauf.7 (𝜑𝐹:𝑍𝑋)
Assertion
Ref Expression
iscauf (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐵(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem iscauf
StepHypRef Expression
1 iscau3.3 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 elfvdm 6957 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
31, 2syl 17 . . . . 5 (𝜑𝑋 ∈ dom ∞Met)
4 cnex 11265 . . . . 5 ℂ ∈ V
53, 4jctir 520 . . . 4 (𝜑 → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
6 iscauf.7 . . . . 5 (𝜑𝐹:𝑍𝑋)
7 iscau3.2 . . . . . 6 𝑍 = (ℤ𝑀)
8 uzssz 12924 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
9 zsscn 12647 . . . . . . 7 ℤ ⊆ ℂ
108, 9sstri 4018 . . . . . 6 (ℤ𝑀) ⊆ ℂ
117, 10eqsstri 4043 . . . . 5 𝑍 ⊆ ℂ
126, 11jctir 520 . . . 4 (𝜑 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
13 elpm2r 8903 . . . 4 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
145, 12, 13syl2anc 583 . . 3 (𝜑𝐹 ∈ (𝑋pm ℂ))
1514biantrurd 532 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
161adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐷 ∈ (∞Met‘𝑋))
17 iscau4.6 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
1817adantrr 716 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) = 𝐵)
196adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐹:𝑍𝑋)
20 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑗𝑍)
2119, 20ffvelcdmd 7119 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ 𝑋)
2218, 21eqeltrrd 2845 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐵𝑋)
237uztrn2 12922 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
24 iscau4.5 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
2523, 24sylan2 592 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) = 𝐴)
26 ffvelcdm 7115 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
276, 23, 26syl2an 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ 𝑋)
2825, 27eqeltrrd 2845 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐴𝑋)
29 xmetsym 24378 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3016, 22, 28, 29syl3anc 1371 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3130breq1d 5176 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝐴𝐷𝐵) < 𝑥))
32 fdm 6756 . . . . . . . . . . . . 13 (𝐹:𝑍𝑋 → dom 𝐹 = 𝑍)
3332eleq2d 2830 . . . . . . . . . . . 12 (𝐹:𝑍𝑋 → (𝑘 ∈ dom 𝐹𝑘𝑍))
3433biimpar 477 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → 𝑘 ∈ dom 𝐹)
356, 23, 34syl2an 595 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ dom 𝐹)
3635, 28jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑘 ∈ dom 𝐹𝐴𝑋))
3736biantrurd 532 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐴𝐷𝐵) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹𝐴𝑋) ∧ (𝐴𝐷𝐵) < 𝑥)))
38 df-3an 1089 . . . . . . . 8 ((𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹𝐴𝑋) ∧ (𝐴𝐷𝐵) < 𝑥))
3937, 38bitr4di 289 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐴𝐷𝐵) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4031, 39bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4140anassrs 467 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4241ralbidva 3182 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4342rexbidva 3183 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4443ralbidv 3184 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
45 iscau3.4 . . 3 (𝜑𝑀 ∈ ℤ)
467, 1, 45, 24, 17iscau4 25332 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
4715, 44, 463bitr4rd 312 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  dom cdm 5700  wf 6569  cfv 6573  (class class class)co 7448  pm cpm 8885  cc 11182   < clt 11324  cz 12639  cuz 12903  +crp 13057  ∞Metcxmet 21372  Cauccau 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-z 12640  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-psmet 21379  df-xmet 21380  df-bl 21382  df-cau 25309
This theorem is referenced by:  iscmet3lem1  25344  causs  25351  caubl  25361  minvecolem3  30908  h2hcau  31011  geomcau  37719  caushft  37721  rrncmslem  37792
  Copyright terms: Public domain W3C validator