MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscauf Structured version   Visualization version   GIF version

Theorem iscauf 25314
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " presupposing 𝐹 is a function. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
iscau4.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iscau4.6 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
iscauf.7 (𝜑𝐹:𝑍𝑋)
Assertion
Ref Expression
iscauf (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐵(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem iscauf
StepHypRef Expression
1 iscau3.3 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 elfvdm 6943 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
31, 2syl 17 . . . . 5 (𝜑𝑋 ∈ dom ∞Met)
4 cnex 11236 . . . . 5 ℂ ∈ V
53, 4jctir 520 . . . 4 (𝜑 → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
6 iscauf.7 . . . . 5 (𝜑𝐹:𝑍𝑋)
7 iscau3.2 . . . . . 6 𝑍 = (ℤ𝑀)
8 uzssz 12899 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
9 zsscn 12621 . . . . . . 7 ℤ ⊆ ℂ
108, 9sstri 3993 . . . . . 6 (ℤ𝑀) ⊆ ℂ
117, 10eqsstri 4030 . . . . 5 𝑍 ⊆ ℂ
126, 11jctir 520 . . . 4 (𝜑 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
13 elpm2r 8885 . . . 4 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
145, 12, 13syl2anc 584 . . 3 (𝜑𝐹 ∈ (𝑋pm ℂ))
1514biantrurd 532 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
161adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐷 ∈ (∞Met‘𝑋))
17 iscau4.6 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
1817adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) = 𝐵)
196adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐹:𝑍𝑋)
20 simprl 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑗𝑍)
2119, 20ffvelcdmd 7105 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ 𝑋)
2218, 21eqeltrrd 2842 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐵𝑋)
237uztrn2 12897 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
24 iscau4.5 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
2523, 24sylan2 593 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) = 𝐴)
26 ffvelcdm 7101 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
276, 23, 26syl2an 596 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ 𝑋)
2825, 27eqeltrrd 2842 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐴𝑋)
29 xmetsym 24357 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3016, 22, 28, 29syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3130breq1d 5153 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝐴𝐷𝐵) < 𝑥))
32 fdm 6745 . . . . . . . . . . . . 13 (𝐹:𝑍𝑋 → dom 𝐹 = 𝑍)
3332eleq2d 2827 . . . . . . . . . . . 12 (𝐹:𝑍𝑋 → (𝑘 ∈ dom 𝐹𝑘𝑍))
3433biimpar 477 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → 𝑘 ∈ dom 𝐹)
356, 23, 34syl2an 596 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ dom 𝐹)
3635, 28jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑘 ∈ dom 𝐹𝐴𝑋))
3736biantrurd 532 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐴𝐷𝐵) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹𝐴𝑋) ∧ (𝐴𝐷𝐵) < 𝑥)))
38 df-3an 1089 . . . . . . . 8 ((𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹𝐴𝑋) ∧ (𝐴𝐷𝐵) < 𝑥))
3937, 38bitr4di 289 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐴𝐷𝐵) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4031, 39bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4140anassrs 467 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4241ralbidva 3176 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4342rexbidva 3177 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4443ralbidv 3178 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
45 iscau3.4 . . 3 (𝜑𝑀 ∈ ℤ)
467, 1, 45, 24, 17iscau4 25313 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
4715, 44, 463bitr4rd 312 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  wss 3951   class class class wbr 5143  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  pm cpm 8867  cc 11153   < clt 11295  cz 12613  cuz 12878  +crp 13034  ∞Metcxmet 21349  Cauccau 25287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-po 5592  df-so 5593  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8014  df-2nd 8015  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-2 12329  df-z 12614  df-uz 12879  df-rp 13035  df-xneg 13154  df-xadd 13155  df-psmet 21356  df-xmet 21357  df-bl 21359  df-cau 25290
This theorem is referenced by:  iscmet3lem1  25325  causs  25332  caubl  25342  minvecolem3  30895  h2hcau  30998  geomcau  37766  caushft  37768  rrncmslem  37839
  Copyright terms: Public domain W3C validator