MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscauf Structured version   Visualization version   GIF version

Theorem iscauf 25178
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " presupposing 𝐹 is a function. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (ℤ𝑀)
iscau3.3 (𝜑𝐷 ∈ (∞Met‘𝑋))
iscau3.4 (𝜑𝑀 ∈ ℤ)
iscau4.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
iscau4.6 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
iscauf.7 (𝜑𝐹:𝑍𝑋)
Assertion
Ref Expression
iscauf (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥))
Distinct variable groups:   𝑗,𝑘,𝑥,𝐷   𝑗,𝐹,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑋,𝑘,𝑥   𝑗,𝑀   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝐴(𝑥,𝑗,𝑘)   𝐵(𝑥,𝑗,𝑘)   𝑀(𝑥,𝑘)

Proof of Theorem iscauf
StepHypRef Expression
1 iscau3.3 . . . . . 6 (𝜑𝐷 ∈ (∞Met‘𝑋))
2 elfvdm 6857 . . . . . 6 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 ∈ dom ∞Met)
31, 2syl 17 . . . . 5 (𝜑𝑋 ∈ dom ∞Met)
4 cnex 11090 . . . . 5 ℂ ∈ V
53, 4jctir 520 . . . 4 (𝜑 → (𝑋 ∈ dom ∞Met ∧ ℂ ∈ V))
6 iscauf.7 . . . . 5 (𝜑𝐹:𝑍𝑋)
7 iscau3.2 . . . . . 6 𝑍 = (ℤ𝑀)
8 uzssz 12756 . . . . . . 7 (ℤ𝑀) ⊆ ℤ
9 zsscn 12479 . . . . . . 7 ℤ ⊆ ℂ
108, 9sstri 3945 . . . . . 6 (ℤ𝑀) ⊆ ℂ
117, 10eqsstri 3982 . . . . 5 𝑍 ⊆ ℂ
126, 11jctir 520 . . . 4 (𝜑 → (𝐹:𝑍𝑋𝑍 ⊆ ℂ))
13 elpm2r 8772 . . . 4 (((𝑋 ∈ dom ∞Met ∧ ℂ ∈ V) ∧ (𝐹:𝑍𝑋𝑍 ⊆ ℂ)) → 𝐹 ∈ (𝑋pm ℂ))
145, 12, 13syl2anc 584 . . 3 (𝜑𝐹 ∈ (𝑋pm ℂ))
1514biantrurd 532 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
161adantr 480 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐷 ∈ (∞Met‘𝑋))
17 iscau4.6 . . . . . . . . . . 11 ((𝜑𝑗𝑍) → (𝐹𝑗) = 𝐵)
1817adantrr 717 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) = 𝐵)
196adantr 480 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐹:𝑍𝑋)
20 simprl 770 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑗𝑍)
2119, 20ffvelcdmd 7019 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑗) ∈ 𝑋)
2218, 21eqeltrrd 2829 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐵𝑋)
237uztrn2 12754 . . . . . . . . . . 11 ((𝑗𝑍𝑘 ∈ (ℤ𝑗)) → 𝑘𝑍)
24 iscau4.5 . . . . . . . . . . 11 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
2523, 24sylan2 593 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) = 𝐴)
26 ffvelcdm 7015 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → (𝐹𝑘) ∈ 𝑋)
276, 23, 26syl2an 596 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐹𝑘) ∈ 𝑋)
2825, 27eqeltrrd 2829 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝐴𝑋)
29 xmetsym 24233 . . . . . . . . 9 ((𝐷 ∈ (∞Met‘𝑋) ∧ 𝐵𝑋𝐴𝑋) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3016, 22, 28, 29syl3anc 1373 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝐵𝐷𝐴) = (𝐴𝐷𝐵))
3130breq1d 5102 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝐴𝐷𝐵) < 𝑥))
32 fdm 6661 . . . . . . . . . . . . 13 (𝐹:𝑍𝑋 → dom 𝐹 = 𝑍)
3332eleq2d 2814 . . . . . . . . . . . 12 (𝐹:𝑍𝑋 → (𝑘 ∈ dom 𝐹𝑘𝑍))
3433biimpar 477 . . . . . . . . . . 11 ((𝐹:𝑍𝑋𝑘𝑍) → 𝑘 ∈ dom 𝐹)
356, 23, 34syl2an 596 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → 𝑘 ∈ dom 𝐹)
3635, 28jca 511 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → (𝑘 ∈ dom 𝐹𝐴𝑋))
3736biantrurd 532 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐴𝐷𝐵) < 𝑥 ↔ ((𝑘 ∈ dom 𝐹𝐴𝑋) ∧ (𝐴𝐷𝐵) < 𝑥)))
38 df-3an 1088 . . . . . . . 8 ((𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥) ↔ ((𝑘 ∈ dom 𝐹𝐴𝑋) ∧ (𝐴𝐷𝐵) < 𝑥))
3937, 38bitr4di 289 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐴𝐷𝐵) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4031, 39bitrd 279 . . . . . 6 ((𝜑 ∧ (𝑗𝑍𝑘 ∈ (ℤ𝑗))) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4140anassrs 467 . . . . 5 (((𝜑𝑗𝑍) ∧ 𝑘 ∈ (ℤ𝑗)) → ((𝐵𝐷𝐴) < 𝑥 ↔ (𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4241ralbidva 3150 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∀𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4342rexbidva 3151 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
4443ralbidv 3152 . 2 (𝜑 → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥 ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥)))
45 iscau3.4 . . 3 (𝜑𝑀 ∈ ℤ)
467, 1, 45, 24, 17iscau4 25177 . 2 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ (𝐹 ∈ (𝑋pm ℂ) ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝑘 ∈ dom 𝐹𝐴𝑋 ∧ (𝐴𝐷𝐵) < 𝑥))))
4715, 44, 463bitr4rd 312 1 (𝜑 → (𝐹 ∈ (Cau‘𝐷) ↔ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)(𝐵𝐷𝐴) < 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  wrex 3053  Vcvv 3436  wss 3903   class class class wbr 5092  dom cdm 5619  wf 6478  cfv 6482  (class class class)co 7349  pm cpm 8754  cc 11007   < clt 11149  cz 12471  cuz 12735  +crp 12893  ∞Metcxmet 21246  Cauccau 25151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-z 12472  df-uz 12736  df-rp 12894  df-xneg 13014  df-xadd 13015  df-psmet 21253  df-xmet 21254  df-bl 21256  df-cau 25154
This theorem is referenced by:  iscmet3lem1  25189  causs  25196  caubl  25206  minvecolem3  30820  h2hcau  30923  geomcau  37743  caushft  37745  rrncmslem  37816
  Copyright terms: Public domain W3C validator