MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscauf Structured version   Visualization version   GIF version

Theorem iscauf 25130
Description: Express the property "𝐹 is a Cauchy sequence of metric 𝐷 " presupposing 𝐹 is a function. (Contributed by NM, 24-Jul-2007.) (Revised by Mario Carneiro, 23-Dec-2013.)
Hypotheses
Ref Expression
iscau3.2 𝑍 = (β„€β‰₯β€˜π‘€)
iscau3.3 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
iscau3.4 (πœ‘ β†’ 𝑀 ∈ β„€)
iscau4.5 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) = 𝐴)
iscau4.6 ((πœ‘ ∧ 𝑗 ∈ 𝑍) β†’ (πΉβ€˜π‘—) = 𝐡)
iscauf.7 (πœ‘ β†’ 𝐹:π‘βŸΆπ‘‹)
Assertion
Ref Expression
iscauf (πœ‘ β†’ (𝐹 ∈ (Cauβ€˜π·) ↔ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(𝐡𝐷𝐴) < π‘₯))
Distinct variable groups:   𝑗,π‘˜,π‘₯,𝐷   𝑗,𝐹,π‘˜,π‘₯   πœ‘,𝑗,π‘˜,π‘₯   𝑗,𝑋,π‘˜,π‘₯   𝑗,𝑀   𝑗,𝑍,π‘˜,π‘₯
Allowed substitution hints:   𝐴(π‘₯,𝑗,π‘˜)   𝐡(π‘₯,𝑗,π‘˜)   𝑀(π‘₯,π‘˜)

Proof of Theorem iscauf
StepHypRef Expression
1 iscau3.3 . . . . . 6 (πœ‘ β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
2 elfvdm 6918 . . . . . 6 (𝐷 ∈ (∞Metβ€˜π‘‹) β†’ 𝑋 ∈ dom ∞Met)
31, 2syl 17 . . . . 5 (πœ‘ β†’ 𝑋 ∈ dom ∞Met)
4 cnex 11187 . . . . 5 β„‚ ∈ V
53, 4jctir 520 . . . 4 (πœ‘ β†’ (𝑋 ∈ dom ∞Met ∧ β„‚ ∈ V))
6 iscauf.7 . . . . 5 (πœ‘ β†’ 𝐹:π‘βŸΆπ‘‹)
7 iscau3.2 . . . . . 6 𝑍 = (β„€β‰₯β€˜π‘€)
8 uzssz 12840 . . . . . . 7 (β„€β‰₯β€˜π‘€) βŠ† β„€
9 zsscn 12563 . . . . . . 7 β„€ βŠ† β„‚
108, 9sstri 3983 . . . . . 6 (β„€β‰₯β€˜π‘€) βŠ† β„‚
117, 10eqsstri 4008 . . . . 5 𝑍 βŠ† β„‚
126, 11jctir 520 . . . 4 (πœ‘ β†’ (𝐹:π‘βŸΆπ‘‹ ∧ 𝑍 βŠ† β„‚))
13 elpm2r 8835 . . . 4 (((𝑋 ∈ dom ∞Met ∧ β„‚ ∈ V) ∧ (𝐹:π‘βŸΆπ‘‹ ∧ 𝑍 βŠ† β„‚)) β†’ 𝐹 ∈ (𝑋 ↑pm β„‚))
145, 12, 13syl2anc 583 . . 3 (πœ‘ β†’ 𝐹 ∈ (𝑋 ↑pm β„‚))
1514biantrurd 532 . 2 (πœ‘ β†’ (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐡) < π‘₯) ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐡) < π‘₯))))
161adantr 480 . . . . . . . . 9 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ 𝐷 ∈ (∞Metβ€˜π‘‹))
17 iscau4.6 . . . . . . . . . . 11 ((πœ‘ ∧ 𝑗 ∈ 𝑍) β†’ (πΉβ€˜π‘—) = 𝐡)
1817adantrr 714 . . . . . . . . . 10 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ (πΉβ€˜π‘—) = 𝐡)
196adantr 480 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ 𝐹:π‘βŸΆπ‘‹)
20 simprl 768 . . . . . . . . . . 11 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ 𝑗 ∈ 𝑍)
2119, 20ffvelcdmd 7077 . . . . . . . . . 10 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ (πΉβ€˜π‘—) ∈ 𝑋)
2218, 21eqeltrrd 2826 . . . . . . . . 9 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ 𝐡 ∈ 𝑋)
237uztrn2 12838 . . . . . . . . . . 11 ((𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ π‘˜ ∈ 𝑍)
24 iscau4.5 . . . . . . . . . . 11 ((πœ‘ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) = 𝐴)
2523, 24sylan2 592 . . . . . . . . . 10 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ (πΉβ€˜π‘˜) = 𝐴)
26 ffvelcdm 7073 . . . . . . . . . . 11 ((𝐹:π‘βŸΆπ‘‹ ∧ π‘˜ ∈ 𝑍) β†’ (πΉβ€˜π‘˜) ∈ 𝑋)
276, 23, 26syl2an 595 . . . . . . . . . 10 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ (πΉβ€˜π‘˜) ∈ 𝑋)
2825, 27eqeltrrd 2826 . . . . . . . . 9 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ 𝐴 ∈ 𝑋)
29 xmetsym 24175 . . . . . . . . 9 ((𝐷 ∈ (∞Metβ€˜π‘‹) ∧ 𝐡 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ (𝐡𝐷𝐴) = (𝐴𝐷𝐡))
3016, 22, 28, 29syl3anc 1368 . . . . . . . 8 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ (𝐡𝐷𝐴) = (𝐴𝐷𝐡))
3130breq1d 5148 . . . . . . 7 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ ((𝐡𝐷𝐴) < π‘₯ ↔ (𝐴𝐷𝐡) < π‘₯))
32 fdm 6716 . . . . . . . . . . . . 13 (𝐹:π‘βŸΆπ‘‹ β†’ dom 𝐹 = 𝑍)
3332eleq2d 2811 . . . . . . . . . . . 12 (𝐹:π‘βŸΆπ‘‹ β†’ (π‘˜ ∈ dom 𝐹 ↔ π‘˜ ∈ 𝑍))
3433biimpar 477 . . . . . . . . . . 11 ((𝐹:π‘βŸΆπ‘‹ ∧ π‘˜ ∈ 𝑍) β†’ π‘˜ ∈ dom 𝐹)
356, 23, 34syl2an 595 . . . . . . . . . 10 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ π‘˜ ∈ dom 𝐹)
3635, 28jca 511 . . . . . . . . 9 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ (π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋))
3736biantrurd 532 . . . . . . . 8 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ ((𝐴𝐷𝐡) < π‘₯ ↔ ((π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋) ∧ (𝐴𝐷𝐡) < π‘₯)))
38 df-3an 1086 . . . . . . . 8 ((π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐡) < π‘₯) ↔ ((π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋) ∧ (𝐴𝐷𝐡) < π‘₯))
3937, 38bitr4di 289 . . . . . . 7 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ ((𝐴𝐷𝐡) < π‘₯ ↔ (π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐡) < π‘₯)))
4031, 39bitrd 279 . . . . . 6 ((πœ‘ ∧ (𝑗 ∈ 𝑍 ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—))) β†’ ((𝐡𝐷𝐴) < π‘₯ ↔ (π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐡) < π‘₯)))
4140anassrs 467 . . . . 5 (((πœ‘ ∧ 𝑗 ∈ 𝑍) ∧ π‘˜ ∈ (β„€β‰₯β€˜π‘—)) β†’ ((𝐡𝐷𝐴) < π‘₯ ↔ (π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐡) < π‘₯)))
4241ralbidva 3167 . . . 4 ((πœ‘ ∧ 𝑗 ∈ 𝑍) β†’ (βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(𝐡𝐷𝐴) < π‘₯ ↔ βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐡) < π‘₯)))
4342rexbidva 3168 . . 3 (πœ‘ β†’ (βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(𝐡𝐷𝐴) < π‘₯ ↔ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐡) < π‘₯)))
4443ralbidv 3169 . 2 (πœ‘ β†’ (βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(𝐡𝐷𝐴) < π‘₯ ↔ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐡) < π‘₯)))
45 iscau3.4 . . 3 (πœ‘ β†’ 𝑀 ∈ β„€)
467, 1, 45, 24, 17iscau4 25129 . 2 (πœ‘ β†’ (𝐹 ∈ (Cauβ€˜π·) ↔ (𝐹 ∈ (𝑋 ↑pm β„‚) ∧ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(π‘˜ ∈ dom 𝐹 ∧ 𝐴 ∈ 𝑋 ∧ (𝐴𝐷𝐡) < π‘₯))))
4715, 44, 463bitr4rd 312 1 (πœ‘ β†’ (𝐹 ∈ (Cauβ€˜π·) ↔ βˆ€π‘₯ ∈ ℝ+ βˆƒπ‘— ∈ 𝑍 βˆ€π‘˜ ∈ (β„€β‰₯β€˜π‘—)(𝐡𝐷𝐴) < π‘₯))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  βˆ€wral 3053  βˆƒwrex 3062  Vcvv 3466   βŠ† wss 3940   class class class wbr 5138  dom cdm 5666  βŸΆwf 6529  β€˜cfv 6533  (class class class)co 7401   ↑pm cpm 8817  β„‚cc 11104   < clt 11245  β„€cz 12555  β„€β‰₯cuz 12819  β„+crp 12971  βˆžMetcxmet 21213  Cauccau 25103
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-po 5578  df-so 5579  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-1st 7968  df-2nd 7969  df-er 8699  df-map 8818  df-pm 8819  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-2 12272  df-z 12556  df-uz 12820  df-rp 12972  df-xneg 13089  df-xadd 13090  df-psmet 21220  df-xmet 21221  df-bl 21223  df-cau 25106
This theorem is referenced by:  iscmet3lem1  25141  causs  25148  caubl  25158  minvecolem3  30598  h2hcau  30701  geomcau  37117  caushft  37119  rrncmslem  37190
  Copyright terms: Public domain W3C validator