Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaa2lem Structured version   Visualization version   GIF version

Theorem elaa2lem 46218
Description: Elementhood in the set of nonzero algebraic numbers. ' Only if ' part of elaa2 46219. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 1-Oct-2020.)
Hypotheses
Ref Expression
elaa2lem.a (𝜑𝐴 ∈ 𝔸)
elaa2lem.an0 (𝜑𝐴 ≠ 0)
elaa2lem.g (𝜑𝐺 ∈ (Poly‘ℤ))
elaa2lem.gn0 (𝜑𝐺 ≠ 0𝑝)
elaa2lem.ga (𝜑 → (𝐺𝐴) = 0)
elaa2lem.m 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )
elaa2lem.i 𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀)))
elaa2lem.f 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)))
Assertion
Ref Expression
elaa2lem (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
Distinct variable groups:   𝐴,𝑓   𝐴,𝑘,𝑧   𝑓,𝐹   𝑘,𝐺   𝑛,𝐺   𝑧,𝐺   𝑘,𝐼,𝑧   𝑘,𝑀   𝑛,𝑀   𝑧,𝑀   𝜑,𝑘,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐴(𝑛)   𝐹(𝑧,𝑘,𝑛)   𝐺(𝑓)   𝐼(𝑓,𝑛)   𝑀(𝑓)

Proof of Theorem elaa2lem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elaa2lem.f . . . 4 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)))
21a1i 11 . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))))
3 zsscn 12497 . . . . 5 ℤ ⊆ ℂ
43a1i 11 . . . 4 (𝜑 → ℤ ⊆ ℂ)
5 elaa2lem.g . . . . . . . . 9 (𝜑𝐺 ∈ (Poly‘ℤ))
6 dgrcl 26154 . . . . . . . . 9 (𝐺 ∈ (Poly‘ℤ) → (deg‘𝐺) ∈ ℕ0)
75, 6syl 17 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℕ0)
87nn0zd 12515 . . . . . . 7 (𝜑 → (deg‘𝐺) ∈ ℤ)
9 elaa2lem.m . . . . . . . . 9 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )
10 ssrab2 4033 . . . . . . . . . 10 {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ ℕ0
11 nn0uz 12795 . . . . . . . . . . . . 13 0 = (ℤ‘0)
1210, 11sseqtri 3986 . . . . . . . . . . . 12 {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0)
1312a1i 11 . . . . . . . . . . 11 (𝜑 → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0))
14 elaa2lem.gn0 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ≠ 0𝑝)
1514neneqd 2930 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝐺 = 0𝑝)
16 eqid 2729 . . . . . . . . . . . . . . . . . 18 (deg‘𝐺) = (deg‘𝐺)
17 eqid 2729 . . . . . . . . . . . . . . . . . 18 (coeff‘𝐺) = (coeff‘𝐺)
1816, 17dgreq0 26187 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ (Poly‘ℤ) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) = 0))
195, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) = 0))
2015, 19mtbid 324 . . . . . . . . . . . . . . 15 (𝜑 → ¬ ((coeff‘𝐺)‘(deg‘𝐺)) = 0)
2120neqned 2932 . . . . . . . . . . . . . 14 (𝜑 → ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0)
227, 21jca 511 . . . . . . . . . . . . 13 (𝜑 → ((deg‘𝐺) ∈ ℕ0 ∧ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
23 fveq2 6826 . . . . . . . . . . . . . . 15 (𝑛 = (deg‘𝐺) → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘(deg‘𝐺)))
2423neeq1d 2984 . . . . . . . . . . . . . 14 (𝑛 = (deg‘𝐺) → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
2524elrab 3650 . . . . . . . . . . . . 13 ((deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ ((deg‘𝐺) ∈ ℕ0 ∧ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
2622, 25sylibr 234 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
2726ne0d 4295 . . . . . . . . . . 11 (𝜑 → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ≠ ∅)
28 infssuzcl 12851 . . . . . . . . . . 11 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
2913, 27, 28syl2anc 584 . . . . . . . . . 10 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
3010, 29sselid 3935 . . . . . . . . 9 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ ℕ0)
319, 30eqeltrid 2832 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
3231nn0zd 12515 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
338, 32zsubcld 12603 . . . . . 6 (𝜑 → ((deg‘𝐺) − 𝑀) ∈ ℤ)
349a1i 11 . . . . . . . 8 (𝜑𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ))
35 infssuzle 12850 . . . . . . . . 9 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ (deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ (deg‘𝐺))
3613, 26, 35syl2anc 584 . . . . . . . 8 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ (deg‘𝐺))
3734, 36eqbrtrd 5117 . . . . . . 7 (𝜑𝑀 ≤ (deg‘𝐺))
387nn0red 12464 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℝ)
3931nn0red 12464 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
4038, 39subge0d 11728 . . . . . . 7 (𝜑 → (0 ≤ ((deg‘𝐺) − 𝑀) ↔ 𝑀 ≤ (deg‘𝐺)))
4137, 40mpbird 257 . . . . . 6 (𝜑 → 0 ≤ ((deg‘𝐺) − 𝑀))
4233, 41jca 511 . . . . 5 (𝜑 → (((deg‘𝐺) − 𝑀) ∈ ℤ ∧ 0 ≤ ((deg‘𝐺) − 𝑀)))
43 elnn0z 12502 . . . . 5 (((deg‘𝐺) − 𝑀) ∈ ℕ0 ↔ (((deg‘𝐺) − 𝑀) ∈ ℤ ∧ 0 ≤ ((deg‘𝐺) − 𝑀)))
4442, 43sylibr 234 . . . 4 (𝜑 → ((deg‘𝐺) − 𝑀) ∈ ℕ0)
45 0zd 12501 . . . . . . . 8 (𝐺 ∈ (Poly‘ℤ) → 0 ∈ ℤ)
4617coef2 26152 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝐺):ℕ0⟶ℤ)
475, 45, 46syl2anc2 585 . . . . . . 7 (𝜑 → (coeff‘𝐺):ℕ0⟶ℤ)
4847adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (coeff‘𝐺):ℕ0⟶ℤ)
49 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5031adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
5149, 50nn0addcld 12467 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℕ0)
5248, 51ffvelcdmd 7023 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ)
53 elaa2lem.i . . . . 5 𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀)))
5452, 53fmptd 7052 . . . 4 (𝜑𝐼:ℕ0⟶ℤ)
55 elplyr 26122 . . . 4 ((ℤ ⊆ ℂ ∧ ((deg‘𝐺) − 𝑀) ∈ ℕ0𝐼:ℕ0⟶ℤ) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) ∈ (Poly‘ℤ))
564, 44, 54, 55syl3anc 1373 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) ∈ (Poly‘ℤ))
572, 56eqeltrd 2828 . 2 (𝜑𝐹 ∈ (Poly‘ℤ))
58 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑘 ≤ ((deg‘𝐺) − 𝑀))
5958iftrued 4486 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
60 iffalse 4487 . . . . . . . . . . 11 𝑘 ≤ ((deg‘𝐺) − 𝑀) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = 0)
6160adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = 0)
62 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀))
6338ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (deg‘𝐺) ∈ ℝ)
6439ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑀 ∈ ℝ)
6563, 64resubcld 11566 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) − 𝑀) ∈ ℝ)
66 nn0re 12411 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
6766ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑘 ∈ ℝ)
6865, 67ltnled 11281 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (((deg‘𝐺) − 𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)))
6962, 68mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) − 𝑀) < 𝑘)
7063, 64, 67ltsubaddd 11734 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (((deg‘𝐺) − 𝑀) < 𝑘 ↔ (deg‘𝐺) < (𝑘 + 𝑀)))
7169, 70mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (deg‘𝐺) < (𝑘 + 𝑀))
72 olc 868 . . . . . . . . . . . . 13 ((deg‘𝐺) < (𝑘 + 𝑀) → (𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)))
7371, 72syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)))
745ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝐺 ∈ (Poly‘ℤ))
7551adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (𝑘 + 𝑀) ∈ ℕ0)
7616, 17dgrlt 26188 . . . . . . . . . . . . 13 ((𝐺 ∈ (Poly‘ℤ) ∧ (𝑘 + 𝑀) ∈ ℕ0) → ((𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)) ↔ ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)))
7774, 75, 76syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)) ↔ ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)))
7873, 77mpbid 232 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0))
7978simprd 495 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)
8061, 79eqtr4d 2767 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
8159, 80pm2.61dan 812 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
8281mpteq2dva 5188 . . . . . . 7 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0)) = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀))))
8347, 4fssd 6673 . . . . . . . . . 10 (𝜑 → (coeff‘𝐺):ℕ0⟶ℂ)
8483adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (coeff‘𝐺):ℕ0⟶ℂ)
85 elfznn0 13541 . . . . . . . . . . 11 (𝑘 ∈ (0...((deg‘𝐺) − 𝑀)) → 𝑘 ∈ ℕ0)
8685adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝑘 ∈ ℕ0)
8731adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝑀 ∈ ℕ0)
8886, 87nn0addcld 12467 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝑘 + 𝑀) ∈ ℕ0)
8984, 88ffvelcdmd 7023 . . . . . . . 8 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℂ)
90 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (0...((deg‘𝐺) − 𝑀)) = (0...((deg‘𝐺) − 𝑀)))
91 simpl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝜑)
9253a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀))))
9392, 52fvmpt2d 6947 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9491, 86, 93syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9594adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9695oveq1d 7368 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((𝐼𝑘) · (𝑧𝑘)) = (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘)))
9790, 96sumeq12rdv 15632 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘)))
9897mpteq2dva 5188 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘))))
992, 98eqtrd 2764 . . . . . . . 8 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘))))
10057, 44, 89, 99coeeq2 26163 . . . . . . 7 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0)))
10182, 100, 923eqtr4d 2774 . . . . . 6 (𝜑 → (coeff‘𝐹) = 𝐼)
102101fveq1d 6828 . . . . 5 (𝜑 → ((coeff‘𝐹)‘0) = (𝐼‘0))
103 oveq1 7360 . . . . . . . . 9 (𝑘 = 0 → (𝑘 + 𝑀) = (0 + 𝑀))
104103adantl 481 . . . . . . . 8 ((𝜑𝑘 = 0) → (𝑘 + 𝑀) = (0 + 𝑀))
1053, 32sselid 3935 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
106105addlidd 11335 . . . . . . . . 9 (𝜑 → (0 + 𝑀) = 𝑀)
107106adantr 480 . . . . . . . 8 ((𝜑𝑘 = 0) → (0 + 𝑀) = 𝑀)
108104, 107eqtrd 2764 . . . . . . 7 ((𝜑𝑘 = 0) → (𝑘 + 𝑀) = 𝑀)
109108fveq2d 6830 . . . . . 6 ((𝜑𝑘 = 0) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = ((coeff‘𝐺)‘𝑀))
110 0nn0 12417 . . . . . . 7 0 ∈ ℕ0
111110a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
11247, 31ffvelcdmd 7023 . . . . . 6 (𝜑 → ((coeff‘𝐺)‘𝑀) ∈ ℤ)
11392, 109, 111, 112fvmptd 6941 . . . . 5 (𝜑 → (𝐼‘0) = ((coeff‘𝐺)‘𝑀))
114 eqidd 2730 . . . . 5 (𝜑 → ((coeff‘𝐺)‘𝑀) = ((coeff‘𝐺)‘𝑀))
115102, 113, 1143eqtrd 2768 . . . 4 (𝜑 → ((coeff‘𝐹)‘0) = ((coeff‘𝐺)‘𝑀))
11634, 29eqeltrd 2828 . . . . . 6 (𝜑𝑀 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
117 fveq2 6826 . . . . . . . 8 (𝑛 = 𝑀 → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘𝑀))
118117neeq1d 2984 . . . . . . 7 (𝑛 = 𝑀 → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘𝑀) ≠ 0))
119118elrab 3650 . . . . . 6 (𝑀 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ (𝑀 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑀) ≠ 0))
120116, 119sylib 218 . . . . 5 (𝜑 → (𝑀 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑀) ≠ 0))
121120simprd 495 . . . 4 (𝜑 → ((coeff‘𝐺)‘𝑀) ≠ 0)
122115, 121eqnetrd 2992 . . 3 (𝜑 → ((coeff‘𝐹)‘0) ≠ 0)
1235, 45syl 17 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
124 aasscn 26242 . . . . . . . . . . 11 𝔸 ⊆ ℂ
125 elaa2lem.a . . . . . . . . . . 11 (𝜑𝐴 ∈ 𝔸)
126124, 125sselid 3935 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
12791, 126syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝐴 ∈ ℂ)
128127, 86expcld 14071 . . . . . . . 8 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐴𝑘) ∈ ℂ)
12989, 128mulcld 11154 . . . . . . 7 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) ∈ ℂ)
130 fvoveq1 7376 . . . . . . . 8 (𝑘 = (𝑗𝑀) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = ((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)))
131 oveq2 7361 . . . . . . . 8 (𝑘 = (𝑗𝑀) → (𝐴𝑘) = (𝐴↑(𝑗𝑀)))
132130, 131oveq12d 7371 . . . . . . 7 (𝑘 = (𝑗𝑀) → (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
13332, 123, 33, 129, 132fsumshft 15705 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
1343, 8sselid 3935 . . . . . . . . . 10 (𝜑 → (deg‘𝐺) ∈ ℂ)
135134, 105npcand 11497 . . . . . . . . 9 (𝜑 → (((deg‘𝐺) − 𝑀) + 𝑀) = (deg‘𝐺))
136106, 135oveq12d 7371 . . . . . . . 8 (𝜑 → ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀)) = (𝑀...(deg‘𝐺)))
137136sumeq1d 15625 . . . . . . 7 (𝜑 → Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
138 elfzelz 13445 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀...(deg‘𝐺)) → 𝑗 ∈ ℤ)
139138adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℤ)
1403, 139sselid 3935 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℂ)
141105adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℂ)
142140, 141npcand 11497 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((𝑗𝑀) + 𝑀) = 𝑗)
143142fveq2d 6830 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) = ((coeff‘𝐺)‘𝑗))
144143oveq1d 7368 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))))
145126adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝐴 ∈ ℂ)
146 elaa2lem.an0 . . . . . . . . . . . . 13 (𝜑𝐴 ≠ 0)
147146adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝐴 ≠ 0)
14832adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℤ)
149145, 147, 148, 139expsubd 14082 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴↑(𝑗𝑀)) = ((𝐴𝑗) / (𝐴𝑀)))
150149oveq2d 7369 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))) = (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))))
15183adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (coeff‘𝐺):ℕ0⟶ℂ)
152 0red 11137 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ∈ ℝ)
15339adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℝ)
154139zred 12598 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℝ)
15531nn0ge0d 12466 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝑀)
156155adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ≤ 𝑀)
157 elfzle1 13448 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑀...(deg‘𝐺)) → 𝑀𝑗)
158157adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀𝑗)
159152, 153, 154, 156, 158letrd 11291 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ≤ 𝑗)
160139, 159jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
161 elnn0z 12502 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
162160, 161sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
163151, 162ffvelcdmd 7023 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((coeff‘𝐺)‘𝑗) ∈ ℂ)
164145, 162expcld 14071 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑗) ∈ ℂ)
165126, 31expcld 14071 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑀) ∈ ℂ)
166165adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑀) ∈ ℂ)
167145, 147, 148expne0d 14077 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑀) ≠ 0)
168163, 164, 166, 167divassd 11953 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))))
169168eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))) = ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
170150, 169eqtr2d 2765 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))))
171144, 170eqtr4d 2767 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
172171sumeq2dv 15627 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀...(deg‘𝐺))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
173137, 172eqtrd 2764 . . . . . 6 (𝜑 → Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
17431, 11eleqtrdi 2838 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘0))
175 fzss1 13484 . . . . . . . 8 (𝑀 ∈ (ℤ‘0) → (𝑀...(deg‘𝐺)) ⊆ (0...(deg‘𝐺)))
176174, 175syl 17 . . . . . . 7 (𝜑 → (𝑀...(deg‘𝐺)) ⊆ (0...(deg‘𝐺)))
177163, 164mulcld 11154 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) ∈ ℂ)
178177, 166, 167divcld 11918 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) ∈ ℂ)
17932ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀 ∈ ℤ)
1808ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → (deg‘𝐺) ∈ ℤ)
181 eldifi 4084 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ (0...(deg‘𝐺)))
182181elfzelzd 13446 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℤ)
183182ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ ℤ)
184 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → ¬ 𝑗 < 𝑀)
18539ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀 ∈ ℝ)
186183zred 12598 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ ℝ)
187185, 186lenltd 11280 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → (𝑀𝑗 ↔ ¬ 𝑗 < 𝑀))
188184, 187mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀𝑗)
189 elfzle2 13449 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(deg‘𝐺)) → 𝑗 ≤ (deg‘𝐺))
190181, 189syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ≤ (deg‘𝐺))
191190ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ≤ (deg‘𝐺))
192179, 180, 183, 188, 191elfzd 13436 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ (𝑀...(deg‘𝐺)))
193 eldifn 4085 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → ¬ 𝑗 ∈ (𝑀...(deg‘𝐺)))
194193ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → ¬ 𝑗 ∈ (𝑀...(deg‘𝐺)))
195192, 194condan 817 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝑗 < 𝑀)
196195adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 < 𝑀)
1979a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ))
19812a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0))
199 elfznn0 13541 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...(deg‘𝐺)) → 𝑗 ∈ ℕ0)
200181, 199syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
201200adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ ℕ0)
202 neqne 2933 . . . . . . . . . . . . . . . . . . 19 (¬ ((coeff‘𝐺)‘𝑗) = 0 → ((coeff‘𝐺)‘𝑗) ≠ 0)
203202adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → ((coeff‘𝐺)‘𝑗) ≠ 0)
204201, 203jca 511 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → (𝑗 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑗) ≠ 0))
205 fveq2 6826 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘𝑗))
206205neeq1d 2984 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘𝑗) ≠ 0))
207206elrab 3650 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ (𝑗 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑗) ≠ 0))
208204, 207sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
209208adantll 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
210 infssuzle 12850 . . . . . . . . . . . . . . 15 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ 𝑗)
211198, 209, 210syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ 𝑗)
212197, 211eqbrtrd 5117 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀𝑗)
21339ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀 ∈ ℝ)
214182zred 12598 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℝ)
215214ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ ℝ)
216213, 215lenltd 11280 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → (𝑀𝑗 ↔ ¬ 𝑗 < 𝑀))
217212, 216mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → ¬ 𝑗 < 𝑀)
218196, 217condan 817 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((coeff‘𝐺)‘𝑗) = 0)
219218oveq1d 7368 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) = (0 · (𝐴𝑗)))
220126adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝐴 ∈ ℂ)
221200adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝑗 ∈ ℕ0)
222220, 221expcld 14071 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (𝐴𝑗) ∈ ℂ)
223222mul02d 11332 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (0 · (𝐴𝑗)) = 0)
224219, 223eqtrd 2764 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) = 0)
225224oveq1d 7368 . . . . . . . 8 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (0 / (𝐴𝑀)))
226126, 146, 32expne0d 14077 . . . . . . . . . 10 (𝜑 → (𝐴𝑀) ≠ 0)
227165, 226div0d 11917 . . . . . . . . 9 (𝜑 → (0 / (𝐴𝑀)) = 0)
228227adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (0 / (𝐴𝑀)) = 0)
229225, 228eqtrd 2764 . . . . . . 7 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = 0)
230 fzfid 13898 . . . . . . 7 (𝜑 → (0...(deg‘𝐺)) ∈ Fin)
231176, 178, 229, 230fsumss 15650 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
232133, 173, 2313eqtrd 2768 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
23386, 52syldan 591 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ)
23453fvmpt2 6945 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
23586, 233, 234syl2anc 584 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
236235adantlr 715 . . . . . . . 8 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
237 oveq1 7360 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧𝑘) = (𝐴𝑘))
238237ad2antlr 727 . . . . . . . 8 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝑧𝑘) = (𝐴𝑘))
239236, 238oveq12d 7371 . . . . . . 7 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((𝐼𝑘) · (𝑧𝑘)) = (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
240239sumeq2dv 15627 . . . . . 6 ((𝜑𝑧 = 𝐴) → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
241 fzfid 13898 . . . . . . 7 (𝜑 → (0...((deg‘𝐺) − 𝑀)) ∈ Fin)
242241, 129fsumcl 15658 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) ∈ ℂ)
2432, 240, 126, 242fvmptd 6941 . . . . 5 (𝜑 → (𝐹𝐴) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
24417, 16coeid2 26160 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ ℂ) → (𝐺𝐴) = Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)))
2455, 126, 244syl2anc 584 . . . . . . 7 (𝜑 → (𝐺𝐴) = Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)))
246245oveq1d 7368 . . . . . 6 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = (Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
24783adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (coeff‘𝐺):ℕ0⟶ℂ)
248199adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
249247, 248ffvelcdmd 7023 . . . . . . . 8 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → ((coeff‘𝐺)‘𝑗) ∈ ℂ)
250126adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → 𝐴 ∈ ℂ)
251250, 248expcld 14071 . . . . . . . 8 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (𝐴𝑗) ∈ ℂ)
252249, 251mulcld 11154 . . . . . . 7 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) ∈ ℂ)
253230, 165, 252, 226fsumdivc 15711 . . . . . 6 (𝜑 → (Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
254246, 253eqtrd 2764 . . . . 5 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
255232, 243, 2543eqtr4d 2774 . . . 4 (𝜑 → (𝐹𝐴) = ((𝐺𝐴) / (𝐴𝑀)))
256 elaa2lem.ga . . . . 5 (𝜑 → (𝐺𝐴) = 0)
257256oveq1d 7368 . . . 4 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = (0 / (𝐴𝑀)))
258255, 257, 2273eqtrd 2768 . . 3 (𝜑 → (𝐹𝐴) = 0)
259122, 258jca 511 . 2 (𝜑 → (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0))
260 fveq2 6826 . . . . . 6 (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹))
261260fveq1d 6828 . . . . 5 (𝑓 = 𝐹 → ((coeff‘𝑓)‘0) = ((coeff‘𝐹)‘0))
262261neeq1d 2984 . . . 4 (𝑓 = 𝐹 → (((coeff‘𝑓)‘0) ≠ 0 ↔ ((coeff‘𝐹)‘0) ≠ 0))
263 fveq1 6825 . . . . 5 (𝑓 = 𝐹 → (𝑓𝐴) = (𝐹𝐴))
264263eqeq1d 2731 . . . 4 (𝑓 = 𝐹 → ((𝑓𝐴) = 0 ↔ (𝐹𝐴) = 0))
265262, 264anbi12d 632 . . 3 (𝑓 = 𝐹 → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) ↔ (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0)))
266265rspcev 3579 . 2 ((𝐹 ∈ (Poly‘ℤ) ∧ (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0)) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
26757, 259, 266syl2anc 584 1 (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3396  cdif 3902  wss 3905  c0 4286  ifcif 4478   class class class wbr 5095  cmpt 5176  wf 6482  cfv 6486  (class class class)co 7353  infcinf 9350  cc 11026  cr 11027  0cc0 11028   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  0cn0 12402  cz 12489  cuz 12753  ...cfz 13428  cexp 13986  Σcsu 15611  0𝑝c0p 25586  Polycply 26105  coeffccoe 26107  degcdgr 26108  𝔸caa 26238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-pm 8763  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-z 12490  df-uz 12754  df-rp 12912  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-0p 25587  df-ply 26109  df-coe 26111  df-dgr 26112  df-aa 26239
This theorem is referenced by:  elaa2  46219
  Copyright terms: Public domain W3C validator