Step | Hyp | Ref
| Expression |
1 | | elaa2lem.f |
. . . 4
⊢ 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼‘𝑘) · (𝑧↑𝑘))) |
2 | 1 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼‘𝑘) · (𝑧↑𝑘)))) |
3 | | zsscn 12028 |
. . . . 5
⊢ ℤ
⊆ ℂ |
4 | 3 | a1i 11 |
. . . 4
⊢ (𝜑 → ℤ ⊆
ℂ) |
5 | | elaa2lem.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈
(Poly‘ℤ)) |
6 | | dgrcl 24929 |
. . . . . . . . 9
⊢ (𝐺 ∈ (Poly‘ℤ)
→ (deg‘𝐺) ∈
ℕ0) |
7 | 5, 6 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → (deg‘𝐺) ∈
ℕ0) |
8 | 7 | nn0zd 12124 |
. . . . . . 7
⊢ (𝜑 → (deg‘𝐺) ∈
ℤ) |
9 | | elaa2lem.m |
. . . . . . . . 9
⊢ 𝑀 = inf({𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) |
10 | | ssrab2 3984 |
. . . . . . . . . 10
⊢ {𝑛 ∈ ℕ0
∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆
ℕ0 |
11 | | nn0uz 12320 |
. . . . . . . . . . . . 13
⊢
ℕ0 = (ℤ≥‘0) |
12 | 10, 11 | sseqtri 3928 |
. . . . . . . . . . . 12
⊢ {𝑛 ∈ ℕ0
∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆
(ℤ≥‘0) |
13 | 12 | a1i 11 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0} ⊆
(ℤ≥‘0)) |
14 | | elaa2lem.gn0 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝐺 ≠
0𝑝) |
15 | 14 | neneqd 2956 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ¬ 𝐺 = 0𝑝) |
16 | | eqid 2758 |
. . . . . . . . . . . . . . . . . 18
⊢
(deg‘𝐺) =
(deg‘𝐺) |
17 | | eqid 2758 |
. . . . . . . . . . . . . . . . . 18
⊢
(coeff‘𝐺) =
(coeff‘𝐺) |
18 | 16, 17 | dgreq0 24961 |
. . . . . . . . . . . . . . . . 17
⊢ (𝐺 ∈ (Poly‘ℤ)
→ (𝐺 =
0𝑝 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) = 0)) |
19 | 5, 18 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (𝐺 = 0𝑝 ↔
((coeff‘𝐺)‘(deg‘𝐺)) = 0)) |
20 | 15, 19 | mtbid 327 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ¬ ((coeff‘𝐺)‘(deg‘𝐺)) = 0) |
21 | 20 | neqned 2958 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0) |
22 | 7, 21 | jca 515 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ((deg‘𝐺) ∈ ℕ0
∧ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0)) |
23 | | fveq2 6658 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = (deg‘𝐺) → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘(deg‘𝐺))) |
24 | 23 | neeq1d 3010 |
. . . . . . . . . . . . . 14
⊢ (𝑛 = (deg‘𝐺) → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0)) |
25 | 24 | elrab 3602 |
. . . . . . . . . . . . 13
⊢
((deg‘𝐺)
∈ {𝑛 ∈
ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ ((deg‘𝐺) ∈ ℕ0
∧ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0)) |
26 | 22, 25 | sylibr 237 |
. . . . . . . . . . . 12
⊢ (𝜑 → (deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}) |
27 | 26 | ne0d 4234 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0} ≠ ∅) |
28 | | infssuzcl 12372 |
. . . . . . . . . . 11
⊢ (({𝑛 ∈ ℕ0
∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆
(ℤ≥‘0) ∧ {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ0
∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ0
∣ ((coeff‘𝐺)‘𝑛) ≠ 0}) |
29 | 13, 27, 28 | syl2anc 587 |
. . . . . . . . . 10
⊢ (𝜑 → inf({𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ0
∣ ((coeff‘𝐺)‘𝑛) ≠ 0}) |
30 | 10, 29 | sseldi 3890 |
. . . . . . . . 9
⊢ (𝜑 → inf({𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈
ℕ0) |
31 | 9, 30 | eqeltrid 2856 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
32 | 31 | nn0zd 12124 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ∈ ℤ) |
33 | 8, 32 | zsubcld 12131 |
. . . . . 6
⊢ (𝜑 → ((deg‘𝐺) − 𝑀) ∈ ℤ) |
34 | 9 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 = inf({𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )) |
35 | | infssuzle 12371 |
. . . . . . . . 9
⊢ (({𝑛 ∈ ℕ0
∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆
(ℤ≥‘0) ∧ (deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤
(deg‘𝐺)) |
36 | 13, 26, 35 | syl2anc 587 |
. . . . . . . 8
⊢ (𝜑 → inf({𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤
(deg‘𝐺)) |
37 | 34, 36 | eqbrtrd 5054 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ≤ (deg‘𝐺)) |
38 | 7 | nn0red 11995 |
. . . . . . . 8
⊢ (𝜑 → (deg‘𝐺) ∈
ℝ) |
39 | 31 | nn0red 11995 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℝ) |
40 | 38, 39 | subge0d 11268 |
. . . . . . 7
⊢ (𝜑 → (0 ≤ ((deg‘𝐺) − 𝑀) ↔ 𝑀 ≤ (deg‘𝐺))) |
41 | 37, 40 | mpbird 260 |
. . . . . 6
⊢ (𝜑 → 0 ≤ ((deg‘𝐺) − 𝑀)) |
42 | 33, 41 | jca 515 |
. . . . 5
⊢ (𝜑 → (((deg‘𝐺) − 𝑀) ∈ ℤ ∧ 0 ≤
((deg‘𝐺) −
𝑀))) |
43 | | elnn0z 12033 |
. . . . 5
⊢
(((deg‘𝐺)
− 𝑀) ∈
ℕ0 ↔ (((deg‘𝐺) − 𝑀) ∈ ℤ ∧ 0 ≤
((deg‘𝐺) −
𝑀))) |
44 | 42, 43 | sylibr 237 |
. . . 4
⊢ (𝜑 → ((deg‘𝐺) − 𝑀) ∈
ℕ0) |
45 | | 0zd 12032 |
. . . . . . . 8
⊢ (𝐺 ∈ (Poly‘ℤ)
→ 0 ∈ ℤ) |
46 | 17 | coef2 24927 |
. . . . . . . 8
⊢ ((𝐺 ∈ (Poly‘ℤ)
∧ 0 ∈ ℤ) → (coeff‘𝐺):ℕ0⟶ℤ) |
47 | 5, 45, 46 | syl2anc2 588 |
. . . . . . 7
⊢ (𝜑 → (coeff‘𝐺):ℕ0⟶ℤ) |
48 | 47 | adantr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
(coeff‘𝐺):ℕ0⟶ℤ) |
49 | | simpr 488 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈
ℕ0) |
50 | 31 | adantr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → 𝑀 ∈
ℕ0) |
51 | 49, 50 | nn0addcld 11998 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝑘 + 𝑀) ∈
ℕ0) |
52 | 48, 51 | ffvelrnd 6843 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) →
((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ) |
53 | | elaa2lem.i |
. . . . 5
⊢ 𝐼 = (𝑘 ∈ ℕ0 ↦
((coeff‘𝐺)‘(𝑘 + 𝑀))) |
54 | 52, 53 | fmptd 6869 |
. . . 4
⊢ (𝜑 → 𝐼:ℕ0⟶ℤ) |
55 | | elplyr 24897 |
. . . 4
⊢ ((ℤ
⊆ ℂ ∧ ((deg‘𝐺) − 𝑀) ∈ ℕ0 ∧ 𝐼:ℕ0⟶ℤ) →
(𝑧 ∈ ℂ ↦
Σ𝑘 ∈
(0...((deg‘𝐺) −
𝑀))((𝐼‘𝑘) · (𝑧↑𝑘))) ∈
(Poly‘ℤ)) |
56 | 4, 44, 54, 55 | syl3anc 1368 |
. . 3
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼‘𝑘) · (𝑧↑𝑘))) ∈
(Poly‘ℤ)) |
57 | 2, 56 | eqeltrd 2852 |
. 2
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℤ)) |
58 | | simpr 488 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑘 ≤ ((deg‘𝐺) − 𝑀)) |
59 | 58 | iftrued 4428 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀))) |
60 | | iffalse 4429 |
. . . . . . . . . . 11
⊢ (¬
𝑘 ≤ ((deg‘𝐺) − 𝑀) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = 0) |
61 | 60 | adantl 485 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = 0) |
62 | | simpr 488 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) |
63 | 38 | ad2antrr 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (deg‘𝐺) ∈ ℝ) |
64 | 39 | ad2antrr 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑀 ∈ ℝ) |
65 | 63, 64 | resubcld 11106 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) − 𝑀) ∈ ℝ) |
66 | | nn0re 11943 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 ∈ ℕ0
→ 𝑘 ∈
ℝ) |
67 | 66 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑘 ∈ ℝ) |
68 | 65, 67 | ltnled 10825 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (((deg‘𝐺) − 𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀))) |
69 | 62, 68 | mpbird 260 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) − 𝑀) < 𝑘) |
70 | 63, 64, 67 | ltsubaddd 11274 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (((deg‘𝐺) − 𝑀) < 𝑘 ↔ (deg‘𝐺) < (𝑘 + 𝑀))) |
71 | 69, 70 | mpbid 235 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (deg‘𝐺) < (𝑘 + 𝑀)) |
72 | | olc 865 |
. . . . . . . . . . . . 13
⊢
((deg‘𝐺) <
(𝑘 + 𝑀) → (𝐺 = 0𝑝 ∨
(deg‘𝐺) < (𝑘 + 𝑀))) |
73 | 71, 72 | syl 17 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (𝐺 = 0𝑝 ∨
(deg‘𝐺) < (𝑘 + 𝑀))) |
74 | 5 | ad2antrr 725 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝐺 ∈
(Poly‘ℤ)) |
75 | 51 | adantr 484 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (𝑘 + 𝑀) ∈
ℕ0) |
76 | 16, 17 | dgrlt 24962 |
. . . . . . . . . . . . 13
⊢ ((𝐺 ∈ (Poly‘ℤ)
∧ (𝑘 + 𝑀) ∈ ℕ0)
→ ((𝐺 =
0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)) ↔ ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0))) |
77 | 74, 75, 76 | syl2anc 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((𝐺 = 0𝑝 ∨
(deg‘𝐺) < (𝑘 + 𝑀)) ↔ ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0))) |
78 | 73, 77 | mpbid 235 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)) |
79 | 78 | simprd 499 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0) |
80 | 61, 79 | eqtr4d 2796 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑘 ∈ ℕ0) ∧ ¬
𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀))) |
81 | 59, 80 | pm2.61dan 812 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀))) |
82 | 81 | mpteq2dva 5127 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0)) = (𝑘 ∈ ℕ0 ↦
((coeff‘𝐺)‘(𝑘 + 𝑀)))) |
83 | 47, 4 | fssd 6513 |
. . . . . . . . . 10
⊢ (𝜑 → (coeff‘𝐺):ℕ0⟶ℂ) |
84 | 83 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (coeff‘𝐺):ℕ0⟶ℂ) |
85 | | elfznn0 13049 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ (0...((deg‘𝐺) − 𝑀)) → 𝑘 ∈ ℕ0) |
86 | 85 | adantl 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝑘 ∈ ℕ0) |
87 | 31 | adantr 484 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝑀 ∈
ℕ0) |
88 | 86, 87 | nn0addcld 11998 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝑘 + 𝑀) ∈
ℕ0) |
89 | 84, 88 | ffvelrnd 6843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℂ) |
90 | | eqidd 2759 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) →
(0...((deg‘𝐺) −
𝑀)) =
(0...((deg‘𝐺) −
𝑀))) |
91 | | simpl 486 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝜑) |
92 | 53 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐼 = (𝑘 ∈ ℕ0 ↦
((coeff‘𝐺)‘(𝑘 + 𝑀)))) |
93 | 92, 52 | fvmpt2d 6772 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ ℕ0) → (𝐼‘𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀))) |
94 | 91, 86, 93 | syl2anc 587 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼‘𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀))) |
95 | 94 | adantlr 714 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼‘𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀))) |
96 | 95 | oveq1d 7165 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((𝐼‘𝑘) · (𝑧↑𝑘)) = (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧↑𝑘))) |
97 | 90, 96 | sumeq12rdv 15112 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧↑𝑘))) |
98 | 97 | mpteq2dva 5127 |
. . . . . . . . 9
⊢ (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼‘𝑘) · (𝑧↑𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧↑𝑘)))) |
99 | 2, 98 | eqtrd 2793 |
. . . . . . . 8
⊢ (𝜑 → 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧↑𝑘)))) |
100 | 57, 44, 89, 99 | coeeq2 24938 |
. . . . . . 7
⊢ (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0))) |
101 | 82, 100, 92 | 3eqtr4d 2803 |
. . . . . 6
⊢ (𝜑 → (coeff‘𝐹) = 𝐼) |
102 | 101 | fveq1d 6660 |
. . . . 5
⊢ (𝜑 → ((coeff‘𝐹)‘0) = (𝐼‘0)) |
103 | | oveq1 7157 |
. . . . . . . . 9
⊢ (𝑘 = 0 → (𝑘 + 𝑀) = (0 + 𝑀)) |
104 | 103 | adantl 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑘 + 𝑀) = (0 + 𝑀)) |
105 | 3, 32 | sseldi 3890 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑀 ∈ ℂ) |
106 | 105 | addid2d 10879 |
. . . . . . . . 9
⊢ (𝜑 → (0 + 𝑀) = 𝑀) |
107 | 106 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 = 0) → (0 + 𝑀) = 𝑀) |
108 | 104, 107 | eqtrd 2793 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 = 0) → (𝑘 + 𝑀) = 𝑀) |
109 | 108 | fveq2d 6662 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 = 0) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = ((coeff‘𝐺)‘𝑀)) |
110 | | 0nn0 11949 |
. . . . . . 7
⊢ 0 ∈
ℕ0 |
111 | 110 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 0 ∈
ℕ0) |
112 | 47, 31 | ffvelrnd 6843 |
. . . . . 6
⊢ (𝜑 → ((coeff‘𝐺)‘𝑀) ∈ ℤ) |
113 | 92, 109, 111, 112 | fvmptd 6766 |
. . . . 5
⊢ (𝜑 → (𝐼‘0) = ((coeff‘𝐺)‘𝑀)) |
114 | | eqidd 2759 |
. . . . 5
⊢ (𝜑 → ((coeff‘𝐺)‘𝑀) = ((coeff‘𝐺)‘𝑀)) |
115 | 102, 113,
114 | 3eqtrd 2797 |
. . . 4
⊢ (𝜑 → ((coeff‘𝐹)‘0) = ((coeff‘𝐺)‘𝑀)) |
116 | 34, 29 | eqeltrd 2852 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}) |
117 | | fveq2 6658 |
. . . . . . . 8
⊢ (𝑛 = 𝑀 → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘𝑀)) |
118 | 117 | neeq1d 3010 |
. . . . . . 7
⊢ (𝑛 = 𝑀 → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘𝑀) ≠ 0)) |
119 | 118 | elrab 3602 |
. . . . . 6
⊢ (𝑀 ∈ {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0} ↔ (𝑀 ∈ ℕ0 ∧
((coeff‘𝐺)‘𝑀) ≠ 0)) |
120 | 116, 119 | sylib 221 |
. . . . 5
⊢ (𝜑 → (𝑀 ∈ ℕ0 ∧
((coeff‘𝐺)‘𝑀) ≠ 0)) |
121 | 120 | simprd 499 |
. . . 4
⊢ (𝜑 → ((coeff‘𝐺)‘𝑀) ≠ 0) |
122 | 115, 121 | eqnetrd 3018 |
. . 3
⊢ (𝜑 → ((coeff‘𝐹)‘0) ≠
0) |
123 | 5, 45 | syl 17 |
. . . . . . 7
⊢ (𝜑 → 0 ∈
ℤ) |
124 | | aasscn 25013 |
. . . . . . . . . . 11
⊢ 𝔸
⊆ ℂ |
125 | | elaa2lem.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈ 𝔸) |
126 | 124, 125 | sseldi 3890 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℂ) |
127 | 91, 126 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝐴 ∈ ℂ) |
128 | 127, 86 | expcld 13560 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐴↑𝑘) ∈ ℂ) |
129 | 89, 128 | mulcld 10699 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴↑𝑘)) ∈ ℂ) |
130 | | fvoveq1 7173 |
. . . . . . . 8
⊢ (𝑘 = (𝑗 − 𝑀) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = ((coeff‘𝐺)‘((𝑗 − 𝑀) + 𝑀))) |
131 | | oveq2 7158 |
. . . . . . . 8
⊢ (𝑘 = (𝑗 − 𝑀) → (𝐴↑𝑘) = (𝐴↑(𝑗 − 𝑀))) |
132 | 130, 131 | oveq12d 7168 |
. . . . . . 7
⊢ (𝑘 = (𝑗 − 𝑀) → (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴↑𝑘)) = (((coeff‘𝐺)‘((𝑗 − 𝑀) + 𝑀)) · (𝐴↑(𝑗 − 𝑀)))) |
133 | 32, 123, 33, 129, 132 | fsumshft 15183 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴↑𝑘)) = Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗 − 𝑀) + 𝑀)) · (𝐴↑(𝑗 − 𝑀)))) |
134 | 3, 8 | sseldi 3890 |
. . . . . . . . . 10
⊢ (𝜑 → (deg‘𝐺) ∈
ℂ) |
135 | 134, 105 | npcand 11039 |
. . . . . . . . 9
⊢ (𝜑 → (((deg‘𝐺) − 𝑀) + 𝑀) = (deg‘𝐺)) |
136 | 106, 135 | oveq12d 7168 |
. . . . . . . 8
⊢ (𝜑 → ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀)) = (𝑀...(deg‘𝐺))) |
137 | 136 | sumeq1d 15106 |
. . . . . . 7
⊢ (𝜑 → Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗 − 𝑀) + 𝑀)) · (𝐴↑(𝑗 − 𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))(((coeff‘𝐺)‘((𝑗 − 𝑀) + 𝑀)) · (𝐴↑(𝑗 − 𝑀)))) |
138 | | elfzelz 12956 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ (𝑀...(deg‘𝐺)) → 𝑗 ∈ ℤ) |
139 | 138 | adantl 485 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℤ) |
140 | 3, 139 | sseldi 3890 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℂ) |
141 | 105 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℂ) |
142 | 140, 141 | npcand 11039 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → ((𝑗 − 𝑀) + 𝑀) = 𝑗) |
143 | 142 | fveq2d 6662 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → ((coeff‘𝐺)‘((𝑗 − 𝑀) + 𝑀)) = ((coeff‘𝐺)‘𝑗)) |
144 | 143 | oveq1d 7165 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘((𝑗 − 𝑀) + 𝑀)) · (𝐴↑(𝑗 − 𝑀))) = (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗 − 𝑀)))) |
145 | 126 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝐴 ∈ ℂ) |
146 | | elaa2lem.an0 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ≠ 0) |
147 | 146 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝐴 ≠ 0) |
148 | 32 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℤ) |
149 | 145, 147,
148, 139 | expsubd 13571 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴↑(𝑗 − 𝑀)) = ((𝐴↑𝑗) / (𝐴↑𝑀))) |
150 | 149 | oveq2d 7166 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗 − 𝑀))) = (((coeff‘𝐺)‘𝑗) · ((𝐴↑𝑗) / (𝐴↑𝑀)))) |
151 | 83 | adantr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → (coeff‘𝐺):ℕ0⟶ℂ) |
152 | | 0red 10682 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ∈
ℝ) |
153 | 39 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℝ) |
154 | 139 | zred 12126 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℝ) |
155 | 31 | nn0ge0d 11997 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 0 ≤ 𝑀) |
156 | 155 | adantr 484 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ≤ 𝑀) |
157 | | elfzle1 12959 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (𝑀...(deg‘𝐺)) → 𝑀 ≤ 𝑗) |
158 | 157 | adantl 485 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ≤ 𝑗) |
159 | 152, 153,
154, 156, 158 | letrd 10835 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ≤ 𝑗) |
160 | 139, 159 | jca 515 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗)) |
161 | | elnn0z 12033 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ0
↔ (𝑗 ∈ ℤ
∧ 0 ≤ 𝑗)) |
162 | 160, 161 | sylibr 237 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℕ0) |
163 | 151, 162 | ffvelrnd 6843 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → ((coeff‘𝐺)‘𝑗) ∈ ℂ) |
164 | 145, 162 | expcld 13560 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴↑𝑗) ∈ ℂ) |
165 | 126, 31 | expcld 13560 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴↑𝑀) ∈ ℂ) |
166 | 165 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴↑𝑀) ∈ ℂ) |
167 | 145, 147,
148 | expne0d 13566 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴↑𝑀) ≠ 0) |
168 | 163, 164,
166, 167 | divassd 11489 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀)) = (((coeff‘𝐺)‘𝑗) · ((𝐴↑𝑗) / (𝐴↑𝑀)))) |
169 | 168 | eqcomd 2764 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · ((𝐴↑𝑗) / (𝐴↑𝑀))) = ((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀))) |
170 | 150, 169 | eqtr2d 2794 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀)) = (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗 − 𝑀)))) |
171 | 144, 170 | eqtr4d 2796 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘((𝑗 − 𝑀) + 𝑀)) · (𝐴↑(𝑗 − 𝑀))) = ((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀))) |
172 | 171 | sumeq2dv 15108 |
. . . . . . 7
⊢ (𝜑 → Σ𝑗 ∈ (𝑀...(deg‘𝐺))(((coeff‘𝐺)‘((𝑗 − 𝑀) + 𝑀)) · (𝐴↑(𝑗 − 𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀))) |
173 | 137, 172 | eqtrd 2793 |
. . . . . 6
⊢ (𝜑 → Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗 − 𝑀) + 𝑀)) · (𝐴↑(𝑗 − 𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀))) |
174 | 31, 11 | eleqtrdi 2862 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈
(ℤ≥‘0)) |
175 | | fzss1 12995 |
. . . . . . . 8
⊢ (𝑀 ∈
(ℤ≥‘0) → (𝑀...(deg‘𝐺)) ⊆ (0...(deg‘𝐺))) |
176 | 174, 175 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑀...(deg‘𝐺)) ⊆ (0...(deg‘𝐺))) |
177 | 163, 164 | mulcld 10699 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) ∈ ℂ) |
178 | 177, 166,
167 | divcld 11454 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀)) ∈ ℂ) |
179 | 32 | ad2antrr 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀 ∈ ℤ) |
180 | 8 | ad2antrr 725 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → (deg‘𝐺) ∈ ℤ) |
181 | | eldifi 4032 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ (0...(deg‘𝐺))) |
182 | | elfznn0 13049 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...(deg‘𝐺)) → 𝑗 ∈ ℕ0) |
183 | 182 | nn0zd 12124 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ (0...(deg‘𝐺)) → 𝑗 ∈ ℤ) |
184 | 181, 183 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℤ) |
185 | 184 | ad2antlr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ ℤ) |
186 | 179, 180,
185 | 3jca 1125 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → (𝑀 ∈ ℤ ∧ (deg‘𝐺) ∈ ℤ ∧ 𝑗 ∈
ℤ)) |
187 | | simpr 488 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → ¬ 𝑗 < 𝑀) |
188 | 39 | ad2antrr 725 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀 ∈ ℝ) |
189 | 185 | zred 12126 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ ℝ) |
190 | 188, 189 | lenltd 10824 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → (𝑀 ≤ 𝑗 ↔ ¬ 𝑗 < 𝑀)) |
191 | 187, 190 | mpbird 260 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀 ≤ 𝑗) |
192 | | elfzle2 12960 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...(deg‘𝐺)) → 𝑗 ≤ (deg‘𝐺)) |
193 | 181, 192 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ≤ (deg‘𝐺)) |
194 | 193 | ad2antlr 726 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ≤ (deg‘𝐺)) |
195 | 186, 191,
194 | jca32 519 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → ((𝑀 ∈ ℤ ∧ (deg‘𝐺) ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ (deg‘𝐺)))) |
196 | | elfz2 12946 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ (𝑀...(deg‘𝐺)) ↔ ((𝑀 ∈ ℤ ∧ (deg‘𝐺) ∈ ℤ ∧ 𝑗 ∈ ℤ) ∧ (𝑀 ≤ 𝑗 ∧ 𝑗 ≤ (deg‘𝐺)))) |
197 | 195, 196 | sylibr 237 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ (𝑀...(deg‘𝐺))) |
198 | | eldifn 4033 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → ¬ 𝑗 ∈ (𝑀...(deg‘𝐺))) |
199 | 198 | ad2antlr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → ¬ 𝑗 ∈ (𝑀...(deg‘𝐺))) |
200 | 197, 199 | condan 817 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝑗 < 𝑀) |
201 | 200 | adantr 484 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 < 𝑀) |
202 | 9 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀 = inf({𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )) |
203 | 12 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0} ⊆
(ℤ≥‘0)) |
204 | 181, 182 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℕ0) |
205 | 204 | adantr 484 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ ℕ0) |
206 | | neqne 2959 |
. . . . . . . . . . . . . . . . . . 19
⊢ (¬
((coeff‘𝐺)‘𝑗) = 0 → ((coeff‘𝐺)‘𝑗) ≠ 0) |
207 | 206 | adantl 485 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → ((coeff‘𝐺)‘𝑗) ≠ 0) |
208 | 205, 207 | jca 515 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → (𝑗 ∈ ℕ0 ∧
((coeff‘𝐺)‘𝑗) ≠ 0)) |
209 | | fveq2 6658 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑗 → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘𝑗)) |
210 | 209 | neeq1d 3010 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑛 = 𝑗 → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘𝑗) ≠ 0)) |
211 | 210 | elrab 3602 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0} ↔ (𝑗 ∈ ℕ0 ∧
((coeff‘𝐺)‘𝑗) ≠ 0)) |
212 | 208, 211 | sylibr 237 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}) |
213 | 212 | adantll 713 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}) |
214 | | infssuzle 12371 |
. . . . . . . . . . . . . . 15
⊢ (({𝑛 ∈ ℕ0
∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆
(ℤ≥‘0) ∧ 𝑗 ∈ {𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ 𝑗) |
215 | 203, 213,
214 | syl2anc 587 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → inf({𝑛 ∈ ℕ0 ∣
((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ 𝑗) |
216 | 202, 215 | eqbrtrd 5054 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀 ≤ 𝑗) |
217 | 39 | ad2antrr 725 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀 ∈ ℝ) |
218 | 184 | zred 12126 |
. . . . . . . . . . . . . . 15
⊢ (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℝ) |
219 | 218 | ad2antlr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ ℝ) |
220 | 217, 219 | lenltd 10824 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → (𝑀 ≤ 𝑗 ↔ ¬ 𝑗 < 𝑀)) |
221 | 216, 220 | mpbid 235 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → ¬ 𝑗 < 𝑀) |
222 | 201, 221 | condan 817 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((coeff‘𝐺)‘𝑗) = 0) |
223 | 222 | oveq1d 7165 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) = (0 · (𝐴↑𝑗))) |
224 | 126 | adantr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝐴 ∈ ℂ) |
225 | 204 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝑗 ∈ ℕ0) |
226 | 224, 225 | expcld 13560 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (𝐴↑𝑗) ∈ ℂ) |
227 | 226 | mul02d 10876 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (0 · (𝐴↑𝑗)) = 0) |
228 | 223, 227 | eqtrd 2793 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) = 0) |
229 | 228 | oveq1d 7165 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀)) = (0 / (𝐴↑𝑀))) |
230 | 126, 146,
32 | expne0d 13566 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴↑𝑀) ≠ 0) |
231 | 165, 230 | div0d 11453 |
. . . . . . . . 9
⊢ (𝜑 → (0 / (𝐴↑𝑀)) = 0) |
232 | 231 | adantr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (0 / (𝐴↑𝑀)) = 0) |
233 | 229, 232 | eqtrd 2793 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀)) = 0) |
234 | | fzfid 13390 |
. . . . . . 7
⊢ (𝜑 → (0...(deg‘𝐺)) ∈ Fin) |
235 | 176, 178,
233, 234 | fsumss 15130 |
. . . . . 6
⊢ (𝜑 → Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀))) |
236 | 133, 173,
235 | 3eqtrd 2797 |
. . . . 5
⊢ (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴↑𝑘)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀))) |
237 | 86, 52 | syldan 594 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ) |
238 | 53 | fvmpt2 6770 |
. . . . . . . . . 10
⊢ ((𝑘 ∈ ℕ0
∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ) → (𝐼‘𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀))) |
239 | 86, 237, 238 | syl2anc 587 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼‘𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀))) |
240 | 239 | adantlr 714 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼‘𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀))) |
241 | | oveq1 7157 |
. . . . . . . . 9
⊢ (𝑧 = 𝐴 → (𝑧↑𝑘) = (𝐴↑𝑘)) |
242 | 241 | ad2antlr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝑧↑𝑘) = (𝐴↑𝑘)) |
243 | 240, 242 | oveq12d 7168 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((𝐼‘𝑘) · (𝑧↑𝑘)) = (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴↑𝑘))) |
244 | 243 | sumeq2dv 15108 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 = 𝐴) → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼‘𝑘) · (𝑧↑𝑘)) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴↑𝑘))) |
245 | | fzfid 13390 |
. . . . . . 7
⊢ (𝜑 → (0...((deg‘𝐺) − 𝑀)) ∈ Fin) |
246 | 245, 129 | fsumcl 15138 |
. . . . . 6
⊢ (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴↑𝑘)) ∈ ℂ) |
247 | 2, 244, 126, 246 | fvmptd 6766 |
. . . . 5
⊢ (𝜑 → (𝐹‘𝐴) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴↑𝑘))) |
248 | 17, 16 | coeid2 24935 |
. . . . . . . 8
⊢ ((𝐺 ∈ (Poly‘ℤ)
∧ 𝐴 ∈ ℂ)
→ (𝐺‘𝐴) = Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗))) |
249 | 5, 126, 248 | syl2anc 587 |
. . . . . . 7
⊢ (𝜑 → (𝐺‘𝐴) = Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗))) |
250 | 249 | oveq1d 7165 |
. . . . . 6
⊢ (𝜑 → ((𝐺‘𝐴) / (𝐴↑𝑀)) = (Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀))) |
251 | 83 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(deg‘𝐺))) → (coeff‘𝐺):ℕ0⟶ℂ) |
252 | 182 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(deg‘𝐺))) → 𝑗 ∈ ℕ0) |
253 | 251, 252 | ffvelrnd 6843 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(deg‘𝐺))) → ((coeff‘𝐺)‘𝑗) ∈ ℂ) |
254 | 126 | adantr 484 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(deg‘𝐺))) → 𝐴 ∈ ℂ) |
255 | 254, 252 | expcld 13560 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(deg‘𝐺))) → (𝐴↑𝑗) ∈ ℂ) |
256 | 253, 255 | mulcld 10699 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ (0...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) ∈ ℂ) |
257 | 234, 165,
256, 230 | fsumdivc 15189 |
. . . . . 6
⊢ (𝜑 → (Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀))) |
258 | 250, 257 | eqtrd 2793 |
. . . . 5
⊢ (𝜑 → ((𝐺‘𝐴) / (𝐴↑𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴↑𝑗)) / (𝐴↑𝑀))) |
259 | 236, 247,
258 | 3eqtr4d 2803 |
. . . 4
⊢ (𝜑 → (𝐹‘𝐴) = ((𝐺‘𝐴) / (𝐴↑𝑀))) |
260 | | elaa2lem.ga |
. . . . 5
⊢ (𝜑 → (𝐺‘𝐴) = 0) |
261 | 260 | oveq1d 7165 |
. . . 4
⊢ (𝜑 → ((𝐺‘𝐴) / (𝐴↑𝑀)) = (0 / (𝐴↑𝑀))) |
262 | 259, 261,
231 | 3eqtrd 2797 |
. . 3
⊢ (𝜑 → (𝐹‘𝐴) = 0) |
263 | 122, 262 | jca 515 |
. 2
⊢ (𝜑 → (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹‘𝐴) = 0)) |
264 | | fveq2 6658 |
. . . . . 6
⊢ (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹)) |
265 | 264 | fveq1d 6660 |
. . . . 5
⊢ (𝑓 = 𝐹 → ((coeff‘𝑓)‘0) = ((coeff‘𝐹)‘0)) |
266 | 265 | neeq1d 3010 |
. . . 4
⊢ (𝑓 = 𝐹 → (((coeff‘𝑓)‘0) ≠ 0 ↔ ((coeff‘𝐹)‘0) ≠
0)) |
267 | | fveq1 6657 |
. . . . 5
⊢ (𝑓 = 𝐹 → (𝑓‘𝐴) = (𝐹‘𝐴)) |
268 | 267 | eqeq1d 2760 |
. . . 4
⊢ (𝑓 = 𝐹 → ((𝑓‘𝐴) = 0 ↔ (𝐹‘𝐴) = 0)) |
269 | 266, 268 | anbi12d 633 |
. . 3
⊢ (𝑓 = 𝐹 → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓‘𝐴) = 0) ↔ (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹‘𝐴) = 0))) |
270 | 269 | rspcev 3541 |
. 2
⊢ ((𝐹 ∈ (Poly‘ℤ)
∧ (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹‘𝐴) = 0)) → ∃𝑓 ∈
(Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓‘𝐴) = 0)) |
271 | 57, 263, 270 | syl2anc 587 |
1
⊢ (𝜑 → ∃𝑓 ∈
(Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓‘𝐴) = 0)) |