Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaa2lem Structured version   Visualization version   GIF version

Theorem elaa2lem 46238
Description: Elementhood in the set of nonzero algebraic numbers. ' Only if ' part of elaa2 46239. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 1-Oct-2020.)
Hypotheses
Ref Expression
elaa2lem.a (𝜑𝐴 ∈ 𝔸)
elaa2lem.an0 (𝜑𝐴 ≠ 0)
elaa2lem.g (𝜑𝐺 ∈ (Poly‘ℤ))
elaa2lem.gn0 (𝜑𝐺 ≠ 0𝑝)
elaa2lem.ga (𝜑 → (𝐺𝐴) = 0)
elaa2lem.m 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )
elaa2lem.i 𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀)))
elaa2lem.f 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)))
Assertion
Ref Expression
elaa2lem (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
Distinct variable groups:   𝐴,𝑓   𝐴,𝑘,𝑧   𝑓,𝐹   𝑘,𝐺   𝑛,𝐺   𝑧,𝐺   𝑘,𝐼,𝑧   𝑘,𝑀   𝑛,𝑀   𝑧,𝑀   𝜑,𝑘,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐴(𝑛)   𝐹(𝑧,𝑘,𝑛)   𝐺(𝑓)   𝐼(𝑓,𝑛)   𝑀(𝑓)

Proof of Theorem elaa2lem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elaa2lem.f . . . 4 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)))
21a1i 11 . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))))
3 zsscn 12544 . . . . 5 ℤ ⊆ ℂ
43a1i 11 . . . 4 (𝜑 → ℤ ⊆ ℂ)
5 elaa2lem.g . . . . . . . . 9 (𝜑𝐺 ∈ (Poly‘ℤ))
6 dgrcl 26145 . . . . . . . . 9 (𝐺 ∈ (Poly‘ℤ) → (deg‘𝐺) ∈ ℕ0)
75, 6syl 17 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℕ0)
87nn0zd 12562 . . . . . . 7 (𝜑 → (deg‘𝐺) ∈ ℤ)
9 elaa2lem.m . . . . . . . . 9 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )
10 ssrab2 4046 . . . . . . . . . 10 {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ ℕ0
11 nn0uz 12842 . . . . . . . . . . . . 13 0 = (ℤ‘0)
1210, 11sseqtri 3998 . . . . . . . . . . . 12 {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0)
1312a1i 11 . . . . . . . . . . 11 (𝜑 → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0))
14 elaa2lem.gn0 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ≠ 0𝑝)
1514neneqd 2931 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝐺 = 0𝑝)
16 eqid 2730 . . . . . . . . . . . . . . . . . 18 (deg‘𝐺) = (deg‘𝐺)
17 eqid 2730 . . . . . . . . . . . . . . . . . 18 (coeff‘𝐺) = (coeff‘𝐺)
1816, 17dgreq0 26178 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ (Poly‘ℤ) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) = 0))
195, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) = 0))
2015, 19mtbid 324 . . . . . . . . . . . . . . 15 (𝜑 → ¬ ((coeff‘𝐺)‘(deg‘𝐺)) = 0)
2120neqned 2933 . . . . . . . . . . . . . 14 (𝜑 → ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0)
227, 21jca 511 . . . . . . . . . . . . 13 (𝜑 → ((deg‘𝐺) ∈ ℕ0 ∧ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
23 fveq2 6861 . . . . . . . . . . . . . . 15 (𝑛 = (deg‘𝐺) → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘(deg‘𝐺)))
2423neeq1d 2985 . . . . . . . . . . . . . 14 (𝑛 = (deg‘𝐺) → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
2524elrab 3662 . . . . . . . . . . . . 13 ((deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ ((deg‘𝐺) ∈ ℕ0 ∧ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
2622, 25sylibr 234 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
2726ne0d 4308 . . . . . . . . . . 11 (𝜑 → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ≠ ∅)
28 infssuzcl 12898 . . . . . . . . . . 11 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
2913, 27, 28syl2anc 584 . . . . . . . . . 10 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
3010, 29sselid 3947 . . . . . . . . 9 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ ℕ0)
319, 30eqeltrid 2833 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
3231nn0zd 12562 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
338, 32zsubcld 12650 . . . . . 6 (𝜑 → ((deg‘𝐺) − 𝑀) ∈ ℤ)
349a1i 11 . . . . . . . 8 (𝜑𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ))
35 infssuzle 12897 . . . . . . . . 9 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ (deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ (deg‘𝐺))
3613, 26, 35syl2anc 584 . . . . . . . 8 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ (deg‘𝐺))
3734, 36eqbrtrd 5132 . . . . . . 7 (𝜑𝑀 ≤ (deg‘𝐺))
387nn0red 12511 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℝ)
3931nn0red 12511 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
4038, 39subge0d 11775 . . . . . . 7 (𝜑 → (0 ≤ ((deg‘𝐺) − 𝑀) ↔ 𝑀 ≤ (deg‘𝐺)))
4137, 40mpbird 257 . . . . . 6 (𝜑 → 0 ≤ ((deg‘𝐺) − 𝑀))
4233, 41jca 511 . . . . 5 (𝜑 → (((deg‘𝐺) − 𝑀) ∈ ℤ ∧ 0 ≤ ((deg‘𝐺) − 𝑀)))
43 elnn0z 12549 . . . . 5 (((deg‘𝐺) − 𝑀) ∈ ℕ0 ↔ (((deg‘𝐺) − 𝑀) ∈ ℤ ∧ 0 ≤ ((deg‘𝐺) − 𝑀)))
4442, 43sylibr 234 . . . 4 (𝜑 → ((deg‘𝐺) − 𝑀) ∈ ℕ0)
45 0zd 12548 . . . . . . . 8 (𝐺 ∈ (Poly‘ℤ) → 0 ∈ ℤ)
4617coef2 26143 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝐺):ℕ0⟶ℤ)
475, 45, 46syl2anc2 585 . . . . . . 7 (𝜑 → (coeff‘𝐺):ℕ0⟶ℤ)
4847adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (coeff‘𝐺):ℕ0⟶ℤ)
49 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5031adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
5149, 50nn0addcld 12514 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℕ0)
5248, 51ffvelcdmd 7060 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ)
53 elaa2lem.i . . . . 5 𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀)))
5452, 53fmptd 7089 . . . 4 (𝜑𝐼:ℕ0⟶ℤ)
55 elplyr 26113 . . . 4 ((ℤ ⊆ ℂ ∧ ((deg‘𝐺) − 𝑀) ∈ ℕ0𝐼:ℕ0⟶ℤ) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) ∈ (Poly‘ℤ))
564, 44, 54, 55syl3anc 1373 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) ∈ (Poly‘ℤ))
572, 56eqeltrd 2829 . 2 (𝜑𝐹 ∈ (Poly‘ℤ))
58 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑘 ≤ ((deg‘𝐺) − 𝑀))
5958iftrued 4499 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
60 iffalse 4500 . . . . . . . . . . 11 𝑘 ≤ ((deg‘𝐺) − 𝑀) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = 0)
6160adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = 0)
62 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀))
6338ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (deg‘𝐺) ∈ ℝ)
6439ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑀 ∈ ℝ)
6563, 64resubcld 11613 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) − 𝑀) ∈ ℝ)
66 nn0re 12458 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
6766ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑘 ∈ ℝ)
6865, 67ltnled 11328 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (((deg‘𝐺) − 𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)))
6962, 68mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) − 𝑀) < 𝑘)
7063, 64, 67ltsubaddd 11781 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (((deg‘𝐺) − 𝑀) < 𝑘 ↔ (deg‘𝐺) < (𝑘 + 𝑀)))
7169, 70mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (deg‘𝐺) < (𝑘 + 𝑀))
72 olc 868 . . . . . . . . . . . . 13 ((deg‘𝐺) < (𝑘 + 𝑀) → (𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)))
7371, 72syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)))
745ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝐺 ∈ (Poly‘ℤ))
7551adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (𝑘 + 𝑀) ∈ ℕ0)
7616, 17dgrlt 26179 . . . . . . . . . . . . 13 ((𝐺 ∈ (Poly‘ℤ) ∧ (𝑘 + 𝑀) ∈ ℕ0) → ((𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)) ↔ ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)))
7774, 75, 76syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)) ↔ ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)))
7873, 77mpbid 232 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0))
7978simprd 495 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)
8061, 79eqtr4d 2768 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
8159, 80pm2.61dan 812 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
8281mpteq2dva 5203 . . . . . . 7 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0)) = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀))))
8347, 4fssd 6708 . . . . . . . . . 10 (𝜑 → (coeff‘𝐺):ℕ0⟶ℂ)
8483adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (coeff‘𝐺):ℕ0⟶ℂ)
85 elfznn0 13588 . . . . . . . . . . 11 (𝑘 ∈ (0...((deg‘𝐺) − 𝑀)) → 𝑘 ∈ ℕ0)
8685adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝑘 ∈ ℕ0)
8731adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝑀 ∈ ℕ0)
8886, 87nn0addcld 12514 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝑘 + 𝑀) ∈ ℕ0)
8984, 88ffvelcdmd 7060 . . . . . . . 8 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℂ)
90 eqidd 2731 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (0...((deg‘𝐺) − 𝑀)) = (0...((deg‘𝐺) − 𝑀)))
91 simpl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝜑)
9253a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀))))
9392, 52fvmpt2d 6984 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9491, 86, 93syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9594adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9695oveq1d 7405 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((𝐼𝑘) · (𝑧𝑘)) = (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘)))
9790, 96sumeq12rdv 15680 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘)))
9897mpteq2dva 5203 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘))))
992, 98eqtrd 2765 . . . . . . . 8 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘))))
10057, 44, 89, 99coeeq2 26154 . . . . . . 7 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0)))
10182, 100, 923eqtr4d 2775 . . . . . 6 (𝜑 → (coeff‘𝐹) = 𝐼)
102101fveq1d 6863 . . . . 5 (𝜑 → ((coeff‘𝐹)‘0) = (𝐼‘0))
103 oveq1 7397 . . . . . . . . 9 (𝑘 = 0 → (𝑘 + 𝑀) = (0 + 𝑀))
104103adantl 481 . . . . . . . 8 ((𝜑𝑘 = 0) → (𝑘 + 𝑀) = (0 + 𝑀))
1053, 32sselid 3947 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
106105addlidd 11382 . . . . . . . . 9 (𝜑 → (0 + 𝑀) = 𝑀)
107106adantr 480 . . . . . . . 8 ((𝜑𝑘 = 0) → (0 + 𝑀) = 𝑀)
108104, 107eqtrd 2765 . . . . . . 7 ((𝜑𝑘 = 0) → (𝑘 + 𝑀) = 𝑀)
109108fveq2d 6865 . . . . . 6 ((𝜑𝑘 = 0) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = ((coeff‘𝐺)‘𝑀))
110 0nn0 12464 . . . . . . 7 0 ∈ ℕ0
111110a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
11247, 31ffvelcdmd 7060 . . . . . 6 (𝜑 → ((coeff‘𝐺)‘𝑀) ∈ ℤ)
11392, 109, 111, 112fvmptd 6978 . . . . 5 (𝜑 → (𝐼‘0) = ((coeff‘𝐺)‘𝑀))
114 eqidd 2731 . . . . 5 (𝜑 → ((coeff‘𝐺)‘𝑀) = ((coeff‘𝐺)‘𝑀))
115102, 113, 1143eqtrd 2769 . . . 4 (𝜑 → ((coeff‘𝐹)‘0) = ((coeff‘𝐺)‘𝑀))
11634, 29eqeltrd 2829 . . . . . 6 (𝜑𝑀 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
117 fveq2 6861 . . . . . . . 8 (𝑛 = 𝑀 → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘𝑀))
118117neeq1d 2985 . . . . . . 7 (𝑛 = 𝑀 → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘𝑀) ≠ 0))
119118elrab 3662 . . . . . 6 (𝑀 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ (𝑀 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑀) ≠ 0))
120116, 119sylib 218 . . . . 5 (𝜑 → (𝑀 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑀) ≠ 0))
121120simprd 495 . . . 4 (𝜑 → ((coeff‘𝐺)‘𝑀) ≠ 0)
122115, 121eqnetrd 2993 . . 3 (𝜑 → ((coeff‘𝐹)‘0) ≠ 0)
1235, 45syl 17 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
124 aasscn 26233 . . . . . . . . . . 11 𝔸 ⊆ ℂ
125 elaa2lem.a . . . . . . . . . . 11 (𝜑𝐴 ∈ 𝔸)
126124, 125sselid 3947 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
12791, 126syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝐴 ∈ ℂ)
128127, 86expcld 14118 . . . . . . . 8 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐴𝑘) ∈ ℂ)
12989, 128mulcld 11201 . . . . . . 7 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) ∈ ℂ)
130 fvoveq1 7413 . . . . . . . 8 (𝑘 = (𝑗𝑀) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = ((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)))
131 oveq2 7398 . . . . . . . 8 (𝑘 = (𝑗𝑀) → (𝐴𝑘) = (𝐴↑(𝑗𝑀)))
132130, 131oveq12d 7408 . . . . . . 7 (𝑘 = (𝑗𝑀) → (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
13332, 123, 33, 129, 132fsumshft 15753 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
1343, 8sselid 3947 . . . . . . . . . 10 (𝜑 → (deg‘𝐺) ∈ ℂ)
135134, 105npcand 11544 . . . . . . . . 9 (𝜑 → (((deg‘𝐺) − 𝑀) + 𝑀) = (deg‘𝐺))
136106, 135oveq12d 7408 . . . . . . . 8 (𝜑 → ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀)) = (𝑀...(deg‘𝐺)))
137136sumeq1d 15673 . . . . . . 7 (𝜑 → Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
138 elfzelz 13492 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀...(deg‘𝐺)) → 𝑗 ∈ ℤ)
139138adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℤ)
1403, 139sselid 3947 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℂ)
141105adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℂ)
142140, 141npcand 11544 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((𝑗𝑀) + 𝑀) = 𝑗)
143142fveq2d 6865 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) = ((coeff‘𝐺)‘𝑗))
144143oveq1d 7405 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))))
145126adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝐴 ∈ ℂ)
146 elaa2lem.an0 . . . . . . . . . . . . 13 (𝜑𝐴 ≠ 0)
147146adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝐴 ≠ 0)
14832adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℤ)
149145, 147, 148, 139expsubd 14129 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴↑(𝑗𝑀)) = ((𝐴𝑗) / (𝐴𝑀)))
150149oveq2d 7406 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))) = (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))))
15183adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (coeff‘𝐺):ℕ0⟶ℂ)
152 0red 11184 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ∈ ℝ)
15339adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℝ)
154139zred 12645 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℝ)
15531nn0ge0d 12513 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝑀)
156155adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ≤ 𝑀)
157 elfzle1 13495 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑀...(deg‘𝐺)) → 𝑀𝑗)
158157adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀𝑗)
159152, 153, 154, 156, 158letrd 11338 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ≤ 𝑗)
160139, 159jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
161 elnn0z 12549 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
162160, 161sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
163151, 162ffvelcdmd 7060 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((coeff‘𝐺)‘𝑗) ∈ ℂ)
164145, 162expcld 14118 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑗) ∈ ℂ)
165126, 31expcld 14118 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑀) ∈ ℂ)
166165adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑀) ∈ ℂ)
167145, 147, 148expne0d 14124 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑀) ≠ 0)
168163, 164, 166, 167divassd 12000 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))))
169168eqcomd 2736 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))) = ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
170150, 169eqtr2d 2766 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))))
171144, 170eqtr4d 2768 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
172171sumeq2dv 15675 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀...(deg‘𝐺))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
173137, 172eqtrd 2765 . . . . . 6 (𝜑 → Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
17431, 11eleqtrdi 2839 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘0))
175 fzss1 13531 . . . . . . . 8 (𝑀 ∈ (ℤ‘0) → (𝑀...(deg‘𝐺)) ⊆ (0...(deg‘𝐺)))
176174, 175syl 17 . . . . . . 7 (𝜑 → (𝑀...(deg‘𝐺)) ⊆ (0...(deg‘𝐺)))
177163, 164mulcld 11201 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) ∈ ℂ)
178177, 166, 167divcld 11965 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) ∈ ℂ)
17932ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀 ∈ ℤ)
1808ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → (deg‘𝐺) ∈ ℤ)
181 eldifi 4097 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ (0...(deg‘𝐺)))
182181elfzelzd 13493 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℤ)
183182ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ ℤ)
184 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → ¬ 𝑗 < 𝑀)
18539ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀 ∈ ℝ)
186183zred 12645 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ ℝ)
187185, 186lenltd 11327 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → (𝑀𝑗 ↔ ¬ 𝑗 < 𝑀))
188184, 187mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀𝑗)
189 elfzle2 13496 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(deg‘𝐺)) → 𝑗 ≤ (deg‘𝐺))
190181, 189syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ≤ (deg‘𝐺))
191190ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ≤ (deg‘𝐺))
192179, 180, 183, 188, 191elfzd 13483 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ (𝑀...(deg‘𝐺)))
193 eldifn 4098 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → ¬ 𝑗 ∈ (𝑀...(deg‘𝐺)))
194193ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → ¬ 𝑗 ∈ (𝑀...(deg‘𝐺)))
195192, 194condan 817 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝑗 < 𝑀)
196195adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 < 𝑀)
1979a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ))
19812a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0))
199 elfznn0 13588 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...(deg‘𝐺)) → 𝑗 ∈ ℕ0)
200181, 199syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
201200adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ ℕ0)
202 neqne 2934 . . . . . . . . . . . . . . . . . . 19 (¬ ((coeff‘𝐺)‘𝑗) = 0 → ((coeff‘𝐺)‘𝑗) ≠ 0)
203202adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → ((coeff‘𝐺)‘𝑗) ≠ 0)
204201, 203jca 511 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → (𝑗 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑗) ≠ 0))
205 fveq2 6861 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘𝑗))
206205neeq1d 2985 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘𝑗) ≠ 0))
207206elrab 3662 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ (𝑗 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑗) ≠ 0))
208204, 207sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
209208adantll 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
210 infssuzle 12897 . . . . . . . . . . . . . . 15 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ 𝑗)
211198, 209, 210syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ 𝑗)
212197, 211eqbrtrd 5132 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀𝑗)
21339ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀 ∈ ℝ)
214182zred 12645 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℝ)
215214ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ ℝ)
216213, 215lenltd 11327 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → (𝑀𝑗 ↔ ¬ 𝑗 < 𝑀))
217212, 216mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → ¬ 𝑗 < 𝑀)
218196, 217condan 817 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((coeff‘𝐺)‘𝑗) = 0)
219218oveq1d 7405 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) = (0 · (𝐴𝑗)))
220126adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝐴 ∈ ℂ)
221200adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝑗 ∈ ℕ0)
222220, 221expcld 14118 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (𝐴𝑗) ∈ ℂ)
223222mul02d 11379 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (0 · (𝐴𝑗)) = 0)
224219, 223eqtrd 2765 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) = 0)
225224oveq1d 7405 . . . . . . . 8 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (0 / (𝐴𝑀)))
226126, 146, 32expne0d 14124 . . . . . . . . . 10 (𝜑 → (𝐴𝑀) ≠ 0)
227165, 226div0d 11964 . . . . . . . . 9 (𝜑 → (0 / (𝐴𝑀)) = 0)
228227adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (0 / (𝐴𝑀)) = 0)
229225, 228eqtrd 2765 . . . . . . 7 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = 0)
230 fzfid 13945 . . . . . . 7 (𝜑 → (0...(deg‘𝐺)) ∈ Fin)
231176, 178, 229, 230fsumss 15698 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
232133, 173, 2313eqtrd 2769 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
23386, 52syldan 591 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ)
23453fvmpt2 6982 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
23586, 233, 234syl2anc 584 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
236235adantlr 715 . . . . . . . 8 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
237 oveq1 7397 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧𝑘) = (𝐴𝑘))
238237ad2antlr 727 . . . . . . . 8 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝑧𝑘) = (𝐴𝑘))
239236, 238oveq12d 7408 . . . . . . 7 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((𝐼𝑘) · (𝑧𝑘)) = (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
240239sumeq2dv 15675 . . . . . 6 ((𝜑𝑧 = 𝐴) → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
241 fzfid 13945 . . . . . . 7 (𝜑 → (0...((deg‘𝐺) − 𝑀)) ∈ Fin)
242241, 129fsumcl 15706 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) ∈ ℂ)
2432, 240, 126, 242fvmptd 6978 . . . . 5 (𝜑 → (𝐹𝐴) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
24417, 16coeid2 26151 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ ℂ) → (𝐺𝐴) = Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)))
2455, 126, 244syl2anc 584 . . . . . . 7 (𝜑 → (𝐺𝐴) = Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)))
246245oveq1d 7405 . . . . . 6 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = (Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
24783adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (coeff‘𝐺):ℕ0⟶ℂ)
248199adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
249247, 248ffvelcdmd 7060 . . . . . . . 8 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → ((coeff‘𝐺)‘𝑗) ∈ ℂ)
250126adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → 𝐴 ∈ ℂ)
251250, 248expcld 14118 . . . . . . . 8 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (𝐴𝑗) ∈ ℂ)
252249, 251mulcld 11201 . . . . . . 7 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) ∈ ℂ)
253230, 165, 252, 226fsumdivc 15759 . . . . . 6 (𝜑 → (Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
254246, 253eqtrd 2765 . . . . 5 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
255232, 243, 2543eqtr4d 2775 . . . 4 (𝜑 → (𝐹𝐴) = ((𝐺𝐴) / (𝐴𝑀)))
256 elaa2lem.ga . . . . 5 (𝜑 → (𝐺𝐴) = 0)
257256oveq1d 7405 . . . 4 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = (0 / (𝐴𝑀)))
258255, 257, 2273eqtrd 2769 . . 3 (𝜑 → (𝐹𝐴) = 0)
259122, 258jca 511 . 2 (𝜑 → (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0))
260 fveq2 6861 . . . . . 6 (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹))
261260fveq1d 6863 . . . . 5 (𝑓 = 𝐹 → ((coeff‘𝑓)‘0) = ((coeff‘𝐹)‘0))
262261neeq1d 2985 . . . 4 (𝑓 = 𝐹 → (((coeff‘𝑓)‘0) ≠ 0 ↔ ((coeff‘𝐹)‘0) ≠ 0))
263 fveq1 6860 . . . . 5 (𝑓 = 𝐹 → (𝑓𝐴) = (𝐹𝐴))
264263eqeq1d 2732 . . . 4 (𝑓 = 𝐹 → ((𝑓𝐴) = 0 ↔ (𝐹𝐴) = 0))
265262, 264anbi12d 632 . . 3 (𝑓 = 𝐹 → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) ↔ (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0)))
266265rspcev 3591 . 2 ((𝐹 ∈ (Poly‘ℤ) ∧ (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0)) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
26757, 259, 266syl2anc 584 1 (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2926  wrex 3054  {crab 3408  cdif 3914  wss 3917  c0 4299  ifcif 4491   class class class wbr 5110  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  infcinf 9399  cc 11073  cr 11074  0cc0 11075   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  0cn0 12449  cz 12536  cuz 12800  ...cfz 13475  cexp 14033  Σcsu 15659  0𝑝c0p 25577  Polycply 26096  coeffccoe 26098  degcdgr 26099  𝔸caa 26229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-fz 13476  df-fzo 13623  df-fl 13761  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-rlim 15462  df-sum 15660  df-0p 25578  df-ply 26100  df-coe 26102  df-dgr 26103  df-aa 26230
This theorem is referenced by:  elaa2  46239
  Copyright terms: Public domain W3C validator