Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaa2lem Structured version   Visualization version   GIF version

Theorem elaa2lem 46231
Description: Elementhood in the set of nonzero algebraic numbers. ' Only if ' part of elaa2 46232. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 1-Oct-2020.)
Hypotheses
Ref Expression
elaa2lem.a (𝜑𝐴 ∈ 𝔸)
elaa2lem.an0 (𝜑𝐴 ≠ 0)
elaa2lem.g (𝜑𝐺 ∈ (Poly‘ℤ))
elaa2lem.gn0 (𝜑𝐺 ≠ 0𝑝)
elaa2lem.ga (𝜑 → (𝐺𝐴) = 0)
elaa2lem.m 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )
elaa2lem.i 𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀)))
elaa2lem.f 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)))
Assertion
Ref Expression
elaa2lem (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
Distinct variable groups:   𝐴,𝑓   𝐴,𝑘,𝑧   𝑓,𝐹   𝑘,𝐺   𝑛,𝐺   𝑧,𝐺   𝑘,𝐼,𝑧   𝑘,𝑀   𝑛,𝑀   𝑧,𝑀   𝜑,𝑘,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐴(𝑛)   𝐹(𝑧,𝑘,𝑛)   𝐺(𝑓)   𝐼(𝑓,𝑛)   𝑀(𝑓)

Proof of Theorem elaa2lem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elaa2lem.f . . . 4 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)))
21a1i 11 . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))))
3 zsscn 12537 . . . . 5 ℤ ⊆ ℂ
43a1i 11 . . . 4 (𝜑 → ℤ ⊆ ℂ)
5 elaa2lem.g . . . . . . . . 9 (𝜑𝐺 ∈ (Poly‘ℤ))
6 dgrcl 26138 . . . . . . . . 9 (𝐺 ∈ (Poly‘ℤ) → (deg‘𝐺) ∈ ℕ0)
75, 6syl 17 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℕ0)
87nn0zd 12555 . . . . . . 7 (𝜑 → (deg‘𝐺) ∈ ℤ)
9 elaa2lem.m . . . . . . . . 9 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )
10 ssrab2 4043 . . . . . . . . . 10 {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ ℕ0
11 nn0uz 12835 . . . . . . . . . . . . 13 0 = (ℤ‘0)
1210, 11sseqtri 3995 . . . . . . . . . . . 12 {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0)
1312a1i 11 . . . . . . . . . . 11 (𝜑 → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0))
14 elaa2lem.gn0 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ≠ 0𝑝)
1514neneqd 2930 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝐺 = 0𝑝)
16 eqid 2729 . . . . . . . . . . . . . . . . . 18 (deg‘𝐺) = (deg‘𝐺)
17 eqid 2729 . . . . . . . . . . . . . . . . . 18 (coeff‘𝐺) = (coeff‘𝐺)
1816, 17dgreq0 26171 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ (Poly‘ℤ) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) = 0))
195, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) = 0))
2015, 19mtbid 324 . . . . . . . . . . . . . . 15 (𝜑 → ¬ ((coeff‘𝐺)‘(deg‘𝐺)) = 0)
2120neqned 2932 . . . . . . . . . . . . . 14 (𝜑 → ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0)
227, 21jca 511 . . . . . . . . . . . . 13 (𝜑 → ((deg‘𝐺) ∈ ℕ0 ∧ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
23 fveq2 6858 . . . . . . . . . . . . . . 15 (𝑛 = (deg‘𝐺) → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘(deg‘𝐺)))
2423neeq1d 2984 . . . . . . . . . . . . . 14 (𝑛 = (deg‘𝐺) → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
2524elrab 3659 . . . . . . . . . . . . 13 ((deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ ((deg‘𝐺) ∈ ℕ0 ∧ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
2622, 25sylibr 234 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
2726ne0d 4305 . . . . . . . . . . 11 (𝜑 → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ≠ ∅)
28 infssuzcl 12891 . . . . . . . . . . 11 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
2913, 27, 28syl2anc 584 . . . . . . . . . 10 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
3010, 29sselid 3944 . . . . . . . . 9 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ ℕ0)
319, 30eqeltrid 2832 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
3231nn0zd 12555 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
338, 32zsubcld 12643 . . . . . 6 (𝜑 → ((deg‘𝐺) − 𝑀) ∈ ℤ)
349a1i 11 . . . . . . . 8 (𝜑𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ))
35 infssuzle 12890 . . . . . . . . 9 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ (deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ (deg‘𝐺))
3613, 26, 35syl2anc 584 . . . . . . . 8 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ (deg‘𝐺))
3734, 36eqbrtrd 5129 . . . . . . 7 (𝜑𝑀 ≤ (deg‘𝐺))
387nn0red 12504 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℝ)
3931nn0red 12504 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
4038, 39subge0d 11768 . . . . . . 7 (𝜑 → (0 ≤ ((deg‘𝐺) − 𝑀) ↔ 𝑀 ≤ (deg‘𝐺)))
4137, 40mpbird 257 . . . . . 6 (𝜑 → 0 ≤ ((deg‘𝐺) − 𝑀))
4233, 41jca 511 . . . . 5 (𝜑 → (((deg‘𝐺) − 𝑀) ∈ ℤ ∧ 0 ≤ ((deg‘𝐺) − 𝑀)))
43 elnn0z 12542 . . . . 5 (((deg‘𝐺) − 𝑀) ∈ ℕ0 ↔ (((deg‘𝐺) − 𝑀) ∈ ℤ ∧ 0 ≤ ((deg‘𝐺) − 𝑀)))
4442, 43sylibr 234 . . . 4 (𝜑 → ((deg‘𝐺) − 𝑀) ∈ ℕ0)
45 0zd 12541 . . . . . . . 8 (𝐺 ∈ (Poly‘ℤ) → 0 ∈ ℤ)
4617coef2 26136 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝐺):ℕ0⟶ℤ)
475, 45, 46syl2anc2 585 . . . . . . 7 (𝜑 → (coeff‘𝐺):ℕ0⟶ℤ)
4847adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (coeff‘𝐺):ℕ0⟶ℤ)
49 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5031adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
5149, 50nn0addcld 12507 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℕ0)
5248, 51ffvelcdmd 7057 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ)
53 elaa2lem.i . . . . 5 𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀)))
5452, 53fmptd 7086 . . . 4 (𝜑𝐼:ℕ0⟶ℤ)
55 elplyr 26106 . . . 4 ((ℤ ⊆ ℂ ∧ ((deg‘𝐺) − 𝑀) ∈ ℕ0𝐼:ℕ0⟶ℤ) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) ∈ (Poly‘ℤ))
564, 44, 54, 55syl3anc 1373 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) ∈ (Poly‘ℤ))
572, 56eqeltrd 2828 . 2 (𝜑𝐹 ∈ (Poly‘ℤ))
58 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑘 ≤ ((deg‘𝐺) − 𝑀))
5958iftrued 4496 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
60 iffalse 4497 . . . . . . . . . . 11 𝑘 ≤ ((deg‘𝐺) − 𝑀) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = 0)
6160adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = 0)
62 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀))
6338ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (deg‘𝐺) ∈ ℝ)
6439ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑀 ∈ ℝ)
6563, 64resubcld 11606 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) − 𝑀) ∈ ℝ)
66 nn0re 12451 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
6766ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑘 ∈ ℝ)
6865, 67ltnled 11321 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (((deg‘𝐺) − 𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)))
6962, 68mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) − 𝑀) < 𝑘)
7063, 64, 67ltsubaddd 11774 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (((deg‘𝐺) − 𝑀) < 𝑘 ↔ (deg‘𝐺) < (𝑘 + 𝑀)))
7169, 70mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (deg‘𝐺) < (𝑘 + 𝑀))
72 olc 868 . . . . . . . . . . . . 13 ((deg‘𝐺) < (𝑘 + 𝑀) → (𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)))
7371, 72syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)))
745ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝐺 ∈ (Poly‘ℤ))
7551adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (𝑘 + 𝑀) ∈ ℕ0)
7616, 17dgrlt 26172 . . . . . . . . . . . . 13 ((𝐺 ∈ (Poly‘ℤ) ∧ (𝑘 + 𝑀) ∈ ℕ0) → ((𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)) ↔ ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)))
7774, 75, 76syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)) ↔ ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)))
7873, 77mpbid 232 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0))
7978simprd 495 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)
8061, 79eqtr4d 2767 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
8159, 80pm2.61dan 812 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
8281mpteq2dva 5200 . . . . . . 7 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0)) = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀))))
8347, 4fssd 6705 . . . . . . . . . 10 (𝜑 → (coeff‘𝐺):ℕ0⟶ℂ)
8483adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (coeff‘𝐺):ℕ0⟶ℂ)
85 elfznn0 13581 . . . . . . . . . . 11 (𝑘 ∈ (0...((deg‘𝐺) − 𝑀)) → 𝑘 ∈ ℕ0)
8685adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝑘 ∈ ℕ0)
8731adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝑀 ∈ ℕ0)
8886, 87nn0addcld 12507 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝑘 + 𝑀) ∈ ℕ0)
8984, 88ffvelcdmd 7057 . . . . . . . 8 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℂ)
90 eqidd 2730 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (0...((deg‘𝐺) − 𝑀)) = (0...((deg‘𝐺) − 𝑀)))
91 simpl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝜑)
9253a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀))))
9392, 52fvmpt2d 6981 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9491, 86, 93syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9594adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9695oveq1d 7402 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((𝐼𝑘) · (𝑧𝑘)) = (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘)))
9790, 96sumeq12rdv 15673 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘)))
9897mpteq2dva 5200 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘))))
992, 98eqtrd 2764 . . . . . . . 8 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘))))
10057, 44, 89, 99coeeq2 26147 . . . . . . 7 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0)))
10182, 100, 923eqtr4d 2774 . . . . . 6 (𝜑 → (coeff‘𝐹) = 𝐼)
102101fveq1d 6860 . . . . 5 (𝜑 → ((coeff‘𝐹)‘0) = (𝐼‘0))
103 oveq1 7394 . . . . . . . . 9 (𝑘 = 0 → (𝑘 + 𝑀) = (0 + 𝑀))
104103adantl 481 . . . . . . . 8 ((𝜑𝑘 = 0) → (𝑘 + 𝑀) = (0 + 𝑀))
1053, 32sselid 3944 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
106105addlidd 11375 . . . . . . . . 9 (𝜑 → (0 + 𝑀) = 𝑀)
107106adantr 480 . . . . . . . 8 ((𝜑𝑘 = 0) → (0 + 𝑀) = 𝑀)
108104, 107eqtrd 2764 . . . . . . 7 ((𝜑𝑘 = 0) → (𝑘 + 𝑀) = 𝑀)
109108fveq2d 6862 . . . . . 6 ((𝜑𝑘 = 0) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = ((coeff‘𝐺)‘𝑀))
110 0nn0 12457 . . . . . . 7 0 ∈ ℕ0
111110a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
11247, 31ffvelcdmd 7057 . . . . . 6 (𝜑 → ((coeff‘𝐺)‘𝑀) ∈ ℤ)
11392, 109, 111, 112fvmptd 6975 . . . . 5 (𝜑 → (𝐼‘0) = ((coeff‘𝐺)‘𝑀))
114 eqidd 2730 . . . . 5 (𝜑 → ((coeff‘𝐺)‘𝑀) = ((coeff‘𝐺)‘𝑀))
115102, 113, 1143eqtrd 2768 . . . 4 (𝜑 → ((coeff‘𝐹)‘0) = ((coeff‘𝐺)‘𝑀))
11634, 29eqeltrd 2828 . . . . . 6 (𝜑𝑀 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
117 fveq2 6858 . . . . . . . 8 (𝑛 = 𝑀 → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘𝑀))
118117neeq1d 2984 . . . . . . 7 (𝑛 = 𝑀 → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘𝑀) ≠ 0))
119118elrab 3659 . . . . . 6 (𝑀 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ (𝑀 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑀) ≠ 0))
120116, 119sylib 218 . . . . 5 (𝜑 → (𝑀 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑀) ≠ 0))
121120simprd 495 . . . 4 (𝜑 → ((coeff‘𝐺)‘𝑀) ≠ 0)
122115, 121eqnetrd 2992 . . 3 (𝜑 → ((coeff‘𝐹)‘0) ≠ 0)
1235, 45syl 17 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
124 aasscn 26226 . . . . . . . . . . 11 𝔸 ⊆ ℂ
125 elaa2lem.a . . . . . . . . . . 11 (𝜑𝐴 ∈ 𝔸)
126124, 125sselid 3944 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
12791, 126syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝐴 ∈ ℂ)
128127, 86expcld 14111 . . . . . . . 8 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐴𝑘) ∈ ℂ)
12989, 128mulcld 11194 . . . . . . 7 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) ∈ ℂ)
130 fvoveq1 7410 . . . . . . . 8 (𝑘 = (𝑗𝑀) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = ((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)))
131 oveq2 7395 . . . . . . . 8 (𝑘 = (𝑗𝑀) → (𝐴𝑘) = (𝐴↑(𝑗𝑀)))
132130, 131oveq12d 7405 . . . . . . 7 (𝑘 = (𝑗𝑀) → (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
13332, 123, 33, 129, 132fsumshft 15746 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
1343, 8sselid 3944 . . . . . . . . . 10 (𝜑 → (deg‘𝐺) ∈ ℂ)
135134, 105npcand 11537 . . . . . . . . 9 (𝜑 → (((deg‘𝐺) − 𝑀) + 𝑀) = (deg‘𝐺))
136106, 135oveq12d 7405 . . . . . . . 8 (𝜑 → ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀)) = (𝑀...(deg‘𝐺)))
137136sumeq1d 15666 . . . . . . 7 (𝜑 → Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
138 elfzelz 13485 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀...(deg‘𝐺)) → 𝑗 ∈ ℤ)
139138adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℤ)
1403, 139sselid 3944 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℂ)
141105adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℂ)
142140, 141npcand 11537 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((𝑗𝑀) + 𝑀) = 𝑗)
143142fveq2d 6862 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) = ((coeff‘𝐺)‘𝑗))
144143oveq1d 7402 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))))
145126adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝐴 ∈ ℂ)
146 elaa2lem.an0 . . . . . . . . . . . . 13 (𝜑𝐴 ≠ 0)
147146adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝐴 ≠ 0)
14832adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℤ)
149145, 147, 148, 139expsubd 14122 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴↑(𝑗𝑀)) = ((𝐴𝑗) / (𝐴𝑀)))
150149oveq2d 7403 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))) = (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))))
15183adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (coeff‘𝐺):ℕ0⟶ℂ)
152 0red 11177 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ∈ ℝ)
15339adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℝ)
154139zred 12638 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℝ)
15531nn0ge0d 12506 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝑀)
156155adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ≤ 𝑀)
157 elfzle1 13488 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑀...(deg‘𝐺)) → 𝑀𝑗)
158157adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀𝑗)
159152, 153, 154, 156, 158letrd 11331 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ≤ 𝑗)
160139, 159jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
161 elnn0z 12542 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
162160, 161sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
163151, 162ffvelcdmd 7057 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((coeff‘𝐺)‘𝑗) ∈ ℂ)
164145, 162expcld 14111 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑗) ∈ ℂ)
165126, 31expcld 14111 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑀) ∈ ℂ)
166165adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑀) ∈ ℂ)
167145, 147, 148expne0d 14117 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑀) ≠ 0)
168163, 164, 166, 167divassd 11993 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))))
169168eqcomd 2735 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))) = ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
170150, 169eqtr2d 2765 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))))
171144, 170eqtr4d 2767 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
172171sumeq2dv 15668 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀...(deg‘𝐺))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
173137, 172eqtrd 2764 . . . . . 6 (𝜑 → Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
17431, 11eleqtrdi 2838 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘0))
175 fzss1 13524 . . . . . . . 8 (𝑀 ∈ (ℤ‘0) → (𝑀...(deg‘𝐺)) ⊆ (0...(deg‘𝐺)))
176174, 175syl 17 . . . . . . 7 (𝜑 → (𝑀...(deg‘𝐺)) ⊆ (0...(deg‘𝐺)))
177163, 164mulcld 11194 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) ∈ ℂ)
178177, 166, 167divcld 11958 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) ∈ ℂ)
17932ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀 ∈ ℤ)
1808ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → (deg‘𝐺) ∈ ℤ)
181 eldifi 4094 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ (0...(deg‘𝐺)))
182181elfzelzd 13486 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℤ)
183182ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ ℤ)
184 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → ¬ 𝑗 < 𝑀)
18539ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀 ∈ ℝ)
186183zred 12638 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ ℝ)
187185, 186lenltd 11320 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → (𝑀𝑗 ↔ ¬ 𝑗 < 𝑀))
188184, 187mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀𝑗)
189 elfzle2 13489 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(deg‘𝐺)) → 𝑗 ≤ (deg‘𝐺))
190181, 189syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ≤ (deg‘𝐺))
191190ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ≤ (deg‘𝐺))
192179, 180, 183, 188, 191elfzd 13476 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ (𝑀...(deg‘𝐺)))
193 eldifn 4095 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → ¬ 𝑗 ∈ (𝑀...(deg‘𝐺)))
194193ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → ¬ 𝑗 ∈ (𝑀...(deg‘𝐺)))
195192, 194condan 817 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝑗 < 𝑀)
196195adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 < 𝑀)
1979a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ))
19812a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0))
199 elfznn0 13581 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...(deg‘𝐺)) → 𝑗 ∈ ℕ0)
200181, 199syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
201200adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ ℕ0)
202 neqne 2933 . . . . . . . . . . . . . . . . . . 19 (¬ ((coeff‘𝐺)‘𝑗) = 0 → ((coeff‘𝐺)‘𝑗) ≠ 0)
203202adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → ((coeff‘𝐺)‘𝑗) ≠ 0)
204201, 203jca 511 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → (𝑗 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑗) ≠ 0))
205 fveq2 6858 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘𝑗))
206205neeq1d 2984 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘𝑗) ≠ 0))
207206elrab 3659 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ (𝑗 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑗) ≠ 0))
208204, 207sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
209208adantll 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
210 infssuzle 12890 . . . . . . . . . . . . . . 15 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ 𝑗)
211198, 209, 210syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ 𝑗)
212197, 211eqbrtrd 5129 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀𝑗)
21339ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀 ∈ ℝ)
214182zred 12638 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℝ)
215214ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ ℝ)
216213, 215lenltd 11320 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → (𝑀𝑗 ↔ ¬ 𝑗 < 𝑀))
217212, 216mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → ¬ 𝑗 < 𝑀)
218196, 217condan 817 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((coeff‘𝐺)‘𝑗) = 0)
219218oveq1d 7402 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) = (0 · (𝐴𝑗)))
220126adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝐴 ∈ ℂ)
221200adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝑗 ∈ ℕ0)
222220, 221expcld 14111 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (𝐴𝑗) ∈ ℂ)
223222mul02d 11372 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (0 · (𝐴𝑗)) = 0)
224219, 223eqtrd 2764 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) = 0)
225224oveq1d 7402 . . . . . . . 8 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (0 / (𝐴𝑀)))
226126, 146, 32expne0d 14117 . . . . . . . . . 10 (𝜑 → (𝐴𝑀) ≠ 0)
227165, 226div0d 11957 . . . . . . . . 9 (𝜑 → (0 / (𝐴𝑀)) = 0)
228227adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (0 / (𝐴𝑀)) = 0)
229225, 228eqtrd 2764 . . . . . . 7 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = 0)
230 fzfid 13938 . . . . . . 7 (𝜑 → (0...(deg‘𝐺)) ∈ Fin)
231176, 178, 229, 230fsumss 15691 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
232133, 173, 2313eqtrd 2768 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
23386, 52syldan 591 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ)
23453fvmpt2 6979 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
23586, 233, 234syl2anc 584 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
236235adantlr 715 . . . . . . . 8 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
237 oveq1 7394 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧𝑘) = (𝐴𝑘))
238237ad2antlr 727 . . . . . . . 8 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝑧𝑘) = (𝐴𝑘))
239236, 238oveq12d 7405 . . . . . . 7 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((𝐼𝑘) · (𝑧𝑘)) = (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
240239sumeq2dv 15668 . . . . . 6 ((𝜑𝑧 = 𝐴) → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
241 fzfid 13938 . . . . . . 7 (𝜑 → (0...((deg‘𝐺) − 𝑀)) ∈ Fin)
242241, 129fsumcl 15699 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) ∈ ℂ)
2432, 240, 126, 242fvmptd 6975 . . . . 5 (𝜑 → (𝐹𝐴) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
24417, 16coeid2 26144 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ ℂ) → (𝐺𝐴) = Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)))
2455, 126, 244syl2anc 584 . . . . . . 7 (𝜑 → (𝐺𝐴) = Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)))
246245oveq1d 7402 . . . . . 6 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = (Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
24783adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (coeff‘𝐺):ℕ0⟶ℂ)
248199adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
249247, 248ffvelcdmd 7057 . . . . . . . 8 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → ((coeff‘𝐺)‘𝑗) ∈ ℂ)
250126adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → 𝐴 ∈ ℂ)
251250, 248expcld 14111 . . . . . . . 8 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (𝐴𝑗) ∈ ℂ)
252249, 251mulcld 11194 . . . . . . 7 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) ∈ ℂ)
253230, 165, 252, 226fsumdivc 15752 . . . . . 6 (𝜑 → (Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
254246, 253eqtrd 2764 . . . . 5 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
255232, 243, 2543eqtr4d 2774 . . . 4 (𝜑 → (𝐹𝐴) = ((𝐺𝐴) / (𝐴𝑀)))
256 elaa2lem.ga . . . . 5 (𝜑 → (𝐺𝐴) = 0)
257256oveq1d 7402 . . . 4 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = (0 / (𝐴𝑀)))
258255, 257, 2273eqtrd 2768 . . 3 (𝜑 → (𝐹𝐴) = 0)
259122, 258jca 511 . 2 (𝜑 → (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0))
260 fveq2 6858 . . . . . 6 (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹))
261260fveq1d 6860 . . . . 5 (𝑓 = 𝐹 → ((coeff‘𝑓)‘0) = ((coeff‘𝐹)‘0))
262261neeq1d 2984 . . . 4 (𝑓 = 𝐹 → (((coeff‘𝑓)‘0) ≠ 0 ↔ ((coeff‘𝐹)‘0) ≠ 0))
263 fveq1 6857 . . . . 5 (𝑓 = 𝐹 → (𝑓𝐴) = (𝐹𝐴))
264263eqeq1d 2731 . . . 4 (𝑓 = 𝐹 → ((𝑓𝐴) = 0 ↔ (𝐹𝐴) = 0))
265262, 264anbi12d 632 . . 3 (𝑓 = 𝐹 → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) ↔ (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0)))
266265rspcev 3588 . 2 ((𝐹 ∈ (Poly‘ℤ) ∧ (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0)) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
26757, 259, 266syl2anc 584 1 (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925  wrex 3053  {crab 3405  cdif 3911  wss 3914  c0 4296  ifcif 4488   class class class wbr 5107  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  infcinf 9392  cc 11066  cr 11067  0cc0 11068   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  0cn0 12442  cz 12529  cuz 12793  ...cfz 13468  cexp 14026  Σcsu 15652  0𝑝c0p 25570  Polycply 26089  coeffccoe 26091  degcdgr 26092  𝔸caa 26222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-map 8801  df-pm 8802  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-0p 25571  df-ply 26093  df-coe 26095  df-dgr 26096  df-aa 26223
This theorem is referenced by:  elaa2  46232
  Copyright terms: Public domain W3C validator