Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elaa2lem Structured version   Visualization version   GIF version

Theorem elaa2lem 46277
Description: Elementhood in the set of nonzero algebraic numbers. ' Only if ' part of elaa2 46278. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 1-Oct-2020.)
Hypotheses
Ref Expression
elaa2lem.a (𝜑𝐴 ∈ 𝔸)
elaa2lem.an0 (𝜑𝐴 ≠ 0)
elaa2lem.g (𝜑𝐺 ∈ (Poly‘ℤ))
elaa2lem.gn0 (𝜑𝐺 ≠ 0𝑝)
elaa2lem.ga (𝜑 → (𝐺𝐴) = 0)
elaa2lem.m 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )
elaa2lem.i 𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀)))
elaa2lem.f 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)))
Assertion
Ref Expression
elaa2lem (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
Distinct variable groups:   𝐴,𝑓   𝐴,𝑘,𝑧   𝑓,𝐹   𝑘,𝐺   𝑛,𝐺   𝑧,𝐺   𝑘,𝐼,𝑧   𝑘,𝑀   𝑛,𝑀   𝑧,𝑀   𝜑,𝑘,𝑧
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝐴(𝑛)   𝐹(𝑧,𝑘,𝑛)   𝐺(𝑓)   𝐼(𝑓,𝑛)   𝑀(𝑓)

Proof of Theorem elaa2lem
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 elaa2lem.f . . . 4 𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)))
21a1i 11 . . 3 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))))
3 zsscn 12476 . . . . 5 ℤ ⊆ ℂ
43a1i 11 . . . 4 (𝜑 → ℤ ⊆ ℂ)
5 elaa2lem.g . . . . . . . . 9 (𝜑𝐺 ∈ (Poly‘ℤ))
6 dgrcl 26166 . . . . . . . . 9 (𝐺 ∈ (Poly‘ℤ) → (deg‘𝐺) ∈ ℕ0)
75, 6syl 17 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℕ0)
87nn0zd 12494 . . . . . . 7 (𝜑 → (deg‘𝐺) ∈ ℤ)
9 elaa2lem.m . . . . . . . . 9 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )
10 ssrab2 4030 . . . . . . . . . 10 {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ ℕ0
11 nn0uz 12774 . . . . . . . . . . . . 13 0 = (ℤ‘0)
1210, 11sseqtri 3983 . . . . . . . . . . . 12 {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0)
1312a1i 11 . . . . . . . . . . 11 (𝜑 → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0))
14 elaa2lem.gn0 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ≠ 0𝑝)
1514neneqd 2933 . . . . . . . . . . . . . . . 16 (𝜑 → ¬ 𝐺 = 0𝑝)
16 eqid 2731 . . . . . . . . . . . . . . . . . 18 (deg‘𝐺) = (deg‘𝐺)
17 eqid 2731 . . . . . . . . . . . . . . . . . 18 (coeff‘𝐺) = (coeff‘𝐺)
1816, 17dgreq0 26199 . . . . . . . . . . . . . . . . 17 (𝐺 ∈ (Poly‘ℤ) → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) = 0))
195, 18syl 17 . . . . . . . . . . . . . . . 16 (𝜑 → (𝐺 = 0𝑝 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) = 0))
2015, 19mtbid 324 . . . . . . . . . . . . . . 15 (𝜑 → ¬ ((coeff‘𝐺)‘(deg‘𝐺)) = 0)
2120neqned 2935 . . . . . . . . . . . . . 14 (𝜑 → ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0)
227, 21jca 511 . . . . . . . . . . . . 13 (𝜑 → ((deg‘𝐺) ∈ ℕ0 ∧ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
23 fveq2 6822 . . . . . . . . . . . . . . 15 (𝑛 = (deg‘𝐺) → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘(deg‘𝐺)))
2423neeq1d 2987 . . . . . . . . . . . . . 14 (𝑛 = (deg‘𝐺) → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
2524elrab 3647 . . . . . . . . . . . . 13 ((deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ ((deg‘𝐺) ∈ ℕ0 ∧ ((coeff‘𝐺)‘(deg‘𝐺)) ≠ 0))
2622, 25sylibr 234 . . . . . . . . . . . 12 (𝜑 → (deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
2726ne0d 4292 . . . . . . . . . . 11 (𝜑 → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ≠ ∅)
28 infssuzcl 12830 . . . . . . . . . . 11 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ≠ ∅) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
2913, 27, 28syl2anc 584 . . . . . . . . . 10 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
3010, 29sselid 3932 . . . . . . . . 9 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ∈ ℕ0)
319, 30eqeltrid 2835 . . . . . . . 8 (𝜑𝑀 ∈ ℕ0)
3231nn0zd 12494 . . . . . . 7 (𝜑𝑀 ∈ ℤ)
338, 32zsubcld 12582 . . . . . 6 (𝜑 → ((deg‘𝐺) − 𝑀) ∈ ℤ)
349a1i 11 . . . . . . . 8 (𝜑𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ))
35 infssuzle 12829 . . . . . . . . 9 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ (deg‘𝐺) ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ (deg‘𝐺))
3613, 26, 35syl2anc 584 . . . . . . . 8 (𝜑 → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ (deg‘𝐺))
3734, 36eqbrtrd 5113 . . . . . . 7 (𝜑𝑀 ≤ (deg‘𝐺))
387nn0red 12443 . . . . . . . 8 (𝜑 → (deg‘𝐺) ∈ ℝ)
3931nn0red 12443 . . . . . . . 8 (𝜑𝑀 ∈ ℝ)
4038, 39subge0d 11707 . . . . . . 7 (𝜑 → (0 ≤ ((deg‘𝐺) − 𝑀) ↔ 𝑀 ≤ (deg‘𝐺)))
4137, 40mpbird 257 . . . . . 6 (𝜑 → 0 ≤ ((deg‘𝐺) − 𝑀))
4233, 41jca 511 . . . . 5 (𝜑 → (((deg‘𝐺) − 𝑀) ∈ ℤ ∧ 0 ≤ ((deg‘𝐺) − 𝑀)))
43 elnn0z 12481 . . . . 5 (((deg‘𝐺) − 𝑀) ∈ ℕ0 ↔ (((deg‘𝐺) − 𝑀) ∈ ℤ ∧ 0 ≤ ((deg‘𝐺) − 𝑀)))
4442, 43sylibr 234 . . . 4 (𝜑 → ((deg‘𝐺) − 𝑀) ∈ ℕ0)
45 0zd 12480 . . . . . . . 8 (𝐺 ∈ (Poly‘ℤ) → 0 ∈ ℤ)
4617coef2 26164 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℤ) ∧ 0 ∈ ℤ) → (coeff‘𝐺):ℕ0⟶ℤ)
475, 45, 46syl2anc2 585 . . . . . . 7 (𝜑 → (coeff‘𝐺):ℕ0⟶ℤ)
4847adantr 480 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (coeff‘𝐺):ℕ0⟶ℤ)
49 simpr 484 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
5031adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ ℕ0) → 𝑀 ∈ ℕ0)
5149, 50nn0addcld 12446 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 + 𝑀) ∈ ℕ0)
5248, 51ffvelcdmd 7018 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ)
53 elaa2lem.i . . . . 5 𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀)))
5452, 53fmptd 7047 . . . 4 (𝜑𝐼:ℕ0⟶ℤ)
55 elplyr 26134 . . . 4 ((ℤ ⊆ ℂ ∧ ((deg‘𝐺) − 𝑀) ∈ ℕ0𝐼:ℕ0⟶ℤ) → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) ∈ (Poly‘ℤ))
564, 44, 54, 55syl3anc 1373 . . 3 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) ∈ (Poly‘ℤ))
572, 56eqeltrd 2831 . 2 (𝜑𝐹 ∈ (Poly‘ℤ))
58 simpr 484 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑘 ≤ ((deg‘𝐺) − 𝑀))
5958iftrued 4483 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
60 iffalse 4484 . . . . . . . . . . 11 𝑘 ≤ ((deg‘𝐺) − 𝑀) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = 0)
6160adantl 481 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = 0)
62 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀))
6338ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (deg‘𝐺) ∈ ℝ)
6439ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑀 ∈ ℝ)
6563, 64resubcld 11545 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) − 𝑀) ∈ ℝ)
66 nn0re 12390 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
6766ad2antlr 727 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝑘 ∈ ℝ)
6865, 67ltnled 11260 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (((deg‘𝐺) − 𝑀) < 𝑘 ↔ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)))
6962, 68mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) − 𝑀) < 𝑘)
7063, 64, 67ltsubaddd 11713 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (((deg‘𝐺) − 𝑀) < 𝑘 ↔ (deg‘𝐺) < (𝑘 + 𝑀)))
7169, 70mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (deg‘𝐺) < (𝑘 + 𝑀))
72 olc 868 . . . . . . . . . . . . 13 ((deg‘𝐺) < (𝑘 + 𝑀) → (𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)))
7371, 72syl 17 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)))
745ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → 𝐺 ∈ (Poly‘ℤ))
7551adantr 480 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → (𝑘 + 𝑀) ∈ ℕ0)
7616, 17dgrlt 26200 . . . . . . . . . . . . 13 ((𝐺 ∈ (Poly‘ℤ) ∧ (𝑘 + 𝑀) ∈ ℕ0) → ((𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)) ↔ ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)))
7774, 75, 76syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((𝐺 = 0𝑝 ∨ (deg‘𝐺) < (𝑘 + 𝑀)) ↔ ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)))
7873, 77mpbid 232 . . . . . . . . . . 11 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((deg‘𝐺) ≤ (𝑘 + 𝑀) ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0))
7978simprd 495 . . . . . . . . . 10 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = 0)
8061, 79eqtr4d 2769 . . . . . . . . 9 (((𝜑𝑘 ∈ ℕ0) ∧ ¬ 𝑘 ≤ ((deg‘𝐺) − 𝑀)) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
8159, 80pm2.61dan 812 . . . . . . . 8 ((𝜑𝑘 ∈ ℕ0) → if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
8281mpteq2dva 5184 . . . . . . 7 (𝜑 → (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0)) = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀))))
8347, 4fssd 6668 . . . . . . . . . 10 (𝜑 → (coeff‘𝐺):ℕ0⟶ℂ)
8483adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (coeff‘𝐺):ℕ0⟶ℂ)
85 elfznn0 13520 . . . . . . . . . . 11 (𝑘 ∈ (0...((deg‘𝐺) − 𝑀)) → 𝑘 ∈ ℕ0)
8685adantl 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝑘 ∈ ℕ0)
8731adantr 480 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝑀 ∈ ℕ0)
8886, 87nn0addcld 12446 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝑘 + 𝑀) ∈ ℕ0)
8984, 88ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℂ)
90 eqidd 2732 . . . . . . . . . . 11 ((𝜑𝑧 ∈ ℂ) → (0...((deg‘𝐺) − 𝑀)) = (0...((deg‘𝐺) − 𝑀)))
91 simpl 482 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝜑)
9253a1i 11 . . . . . . . . . . . . . . 15 (𝜑𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀))))
9392, 52fvmpt2d 6942 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ ℕ0) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9491, 86, 93syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9594adantlr 715 . . . . . . . . . . . 12 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
9695oveq1d 7361 . . . . . . . . . . 11 (((𝜑𝑧 ∈ ℂ) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((𝐼𝑘) · (𝑧𝑘)) = (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘)))
9790, 96sumeq12rdv 15614 . . . . . . . . . 10 ((𝜑𝑧 ∈ ℂ) → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘)))
9897mpteq2dva 5184 . . . . . . . . 9 (𝜑 → (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘))) = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘))))
992, 98eqtrd 2766 . . . . . . . 8 (𝜑𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝑧𝑘))))
10057, 44, 89, 99coeeq2 26175 . . . . . . 7 (𝜑 → (coeff‘𝐹) = (𝑘 ∈ ℕ0 ↦ if(𝑘 ≤ ((deg‘𝐺) − 𝑀), ((coeff‘𝐺)‘(𝑘 + 𝑀)), 0)))
10182, 100, 923eqtr4d 2776 . . . . . 6 (𝜑 → (coeff‘𝐹) = 𝐼)
102101fveq1d 6824 . . . . 5 (𝜑 → ((coeff‘𝐹)‘0) = (𝐼‘0))
103 oveq1 7353 . . . . . . . . 9 (𝑘 = 0 → (𝑘 + 𝑀) = (0 + 𝑀))
104103adantl 481 . . . . . . . 8 ((𝜑𝑘 = 0) → (𝑘 + 𝑀) = (0 + 𝑀))
1053, 32sselid 3932 . . . . . . . . . 10 (𝜑𝑀 ∈ ℂ)
106105addlidd 11314 . . . . . . . . 9 (𝜑 → (0 + 𝑀) = 𝑀)
107106adantr 480 . . . . . . . 8 ((𝜑𝑘 = 0) → (0 + 𝑀) = 𝑀)
108104, 107eqtrd 2766 . . . . . . 7 ((𝜑𝑘 = 0) → (𝑘 + 𝑀) = 𝑀)
109108fveq2d 6826 . . . . . 6 ((𝜑𝑘 = 0) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = ((coeff‘𝐺)‘𝑀))
110 0nn0 12396 . . . . . . 7 0 ∈ ℕ0
111110a1i 11 . . . . . 6 (𝜑 → 0 ∈ ℕ0)
11247, 31ffvelcdmd 7018 . . . . . 6 (𝜑 → ((coeff‘𝐺)‘𝑀) ∈ ℤ)
11392, 109, 111, 112fvmptd 6936 . . . . 5 (𝜑 → (𝐼‘0) = ((coeff‘𝐺)‘𝑀))
114 eqidd 2732 . . . . 5 (𝜑 → ((coeff‘𝐺)‘𝑀) = ((coeff‘𝐺)‘𝑀))
115102, 113, 1143eqtrd 2770 . . . 4 (𝜑 → ((coeff‘𝐹)‘0) = ((coeff‘𝐺)‘𝑀))
11634, 29eqeltrd 2831 . . . . . 6 (𝜑𝑀 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
117 fveq2 6822 . . . . . . . 8 (𝑛 = 𝑀 → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘𝑀))
118117neeq1d 2987 . . . . . . 7 (𝑛 = 𝑀 → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘𝑀) ≠ 0))
119118elrab 3647 . . . . . 6 (𝑀 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ (𝑀 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑀) ≠ 0))
120116, 119sylib 218 . . . . 5 (𝜑 → (𝑀 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑀) ≠ 0))
121120simprd 495 . . . 4 (𝜑 → ((coeff‘𝐺)‘𝑀) ≠ 0)
122115, 121eqnetrd 2995 . . 3 (𝜑 → ((coeff‘𝐹)‘0) ≠ 0)
1235, 45syl 17 . . . . . . 7 (𝜑 → 0 ∈ ℤ)
124 aasscn 26254 . . . . . . . . . . 11 𝔸 ⊆ ℂ
125 elaa2lem.a . . . . . . . . . . 11 (𝜑𝐴 ∈ 𝔸)
126124, 125sselid 3932 . . . . . . . . . 10 (𝜑𝐴 ∈ ℂ)
12791, 126syl 17 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → 𝐴 ∈ ℂ)
128127, 86expcld 14053 . . . . . . . 8 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐴𝑘) ∈ ℂ)
12989, 128mulcld 11132 . . . . . . 7 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) ∈ ℂ)
130 fvoveq1 7369 . . . . . . . 8 (𝑘 = (𝑗𝑀) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) = ((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)))
131 oveq2 7354 . . . . . . . 8 (𝑘 = (𝑗𝑀) → (𝐴𝑘) = (𝐴↑(𝑗𝑀)))
132130, 131oveq12d 7364 . . . . . . 7 (𝑘 = (𝑗𝑀) → (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
13332, 123, 33, 129, 132fsumshft 15687 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
1343, 8sselid 3932 . . . . . . . . . 10 (𝜑 → (deg‘𝐺) ∈ ℂ)
135134, 105npcand 11476 . . . . . . . . 9 (𝜑 → (((deg‘𝐺) − 𝑀) + 𝑀) = (deg‘𝐺))
136106, 135oveq12d 7364 . . . . . . . 8 (𝜑 → ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀)) = (𝑀...(deg‘𝐺)))
137136sumeq1d 15607 . . . . . . 7 (𝜑 → Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))))
138 elfzelz 13424 . . . . . . . . . . . . . 14 (𝑗 ∈ (𝑀...(deg‘𝐺)) → 𝑗 ∈ ℤ)
139138adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℤ)
1403, 139sselid 3932 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℂ)
141105adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℂ)
142140, 141npcand 11476 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((𝑗𝑀) + 𝑀) = 𝑗)
143142fveq2d 6826 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) = ((coeff‘𝐺)‘𝑗))
144143oveq1d 7361 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))))
145126adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝐴 ∈ ℂ)
146 elaa2lem.an0 . . . . . . . . . . . . 13 (𝜑𝐴 ≠ 0)
147146adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝐴 ≠ 0)
14832adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℤ)
149145, 147, 148, 139expsubd 14064 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴↑(𝑗𝑀)) = ((𝐴𝑗) / (𝐴𝑀)))
150149oveq2d 7362 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))) = (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))))
15183adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (coeff‘𝐺):ℕ0⟶ℂ)
152 0red 11115 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ∈ ℝ)
15339adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀 ∈ ℝ)
154139zred 12577 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℝ)
15531nn0ge0d 12445 . . . . . . . . . . . . . . . . 17 (𝜑 → 0 ≤ 𝑀)
156155adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ≤ 𝑀)
157 elfzle1 13427 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (𝑀...(deg‘𝐺)) → 𝑀𝑗)
158157adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑀𝑗)
159152, 153, 154, 156, 158letrd 11270 . . . . . . . . . . . . . . 15 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 0 ≤ 𝑗)
160139, 159jca 511 . . . . . . . . . . . . . 14 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
161 elnn0z 12481 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ0 ↔ (𝑗 ∈ ℤ ∧ 0 ≤ 𝑗))
162160, 161sylibr 234 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
163151, 162ffvelcdmd 7018 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((coeff‘𝐺)‘𝑗) ∈ ℂ)
164145, 162expcld 14053 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑗) ∈ ℂ)
165126, 31expcld 14053 . . . . . . . . . . . . 13 (𝜑 → (𝐴𝑀) ∈ ℂ)
166165adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑀) ∈ ℂ)
167145, 147, 148expne0d 14059 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (𝐴𝑀) ≠ 0)
168163, 164, 166, 167divassd 11932 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))))
169168eqcomd 2737 . . . . . . . . . 10 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · ((𝐴𝑗) / (𝐴𝑀))) = ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
170150, 169eqtr2d 2767 . . . . . . . . 9 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (((coeff‘𝐺)‘𝑗) · (𝐴↑(𝑗𝑀))))
171144, 170eqtr4d 2769 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
172171sumeq2dv 15609 . . . . . . 7 (𝜑 → Σ𝑗 ∈ (𝑀...(deg‘𝐺))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
173137, 172eqtrd 2766 . . . . . 6 (𝜑 → Σ𝑗 ∈ ((0 + 𝑀)...(((deg‘𝐺) − 𝑀) + 𝑀))(((coeff‘𝐺)‘((𝑗𝑀) + 𝑀)) · (𝐴↑(𝑗𝑀))) = Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
17431, 11eleqtrdi 2841 . . . . . . . 8 (𝜑𝑀 ∈ (ℤ‘0))
175 fzss1 13463 . . . . . . . 8 (𝑀 ∈ (ℤ‘0) → (𝑀...(deg‘𝐺)) ⊆ (0...(deg‘𝐺)))
176174, 175syl 17 . . . . . . 7 (𝜑 → (𝑀...(deg‘𝐺)) ⊆ (0...(deg‘𝐺)))
177163, 164mulcld 11132 . . . . . . . 8 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) ∈ ℂ)
178177, 166, 167divcld 11897 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...(deg‘𝐺))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) ∈ ℂ)
17932ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀 ∈ ℤ)
1808ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → (deg‘𝐺) ∈ ℤ)
181 eldifi 4081 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ (0...(deg‘𝐺)))
182181elfzelzd 13425 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℤ)
183182ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ ℤ)
184 simpr 484 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → ¬ 𝑗 < 𝑀)
18539ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀 ∈ ℝ)
186183zred 12577 . . . . . . . . . . . . . . . . 17 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ ℝ)
187185, 186lenltd 11259 . . . . . . . . . . . . . . . 16 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → (𝑀𝑗 ↔ ¬ 𝑗 < 𝑀))
188184, 187mpbird 257 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑀𝑗)
189 elfzle2 13428 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...(deg‘𝐺)) → 𝑗 ≤ (deg‘𝐺))
190181, 189syl 17 . . . . . . . . . . . . . . . 16 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ≤ (deg‘𝐺))
191190ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ≤ (deg‘𝐺))
192179, 180, 183, 188, 191elfzd 13415 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → 𝑗 ∈ (𝑀...(deg‘𝐺)))
193 eldifn 4082 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → ¬ 𝑗 ∈ (𝑀...(deg‘𝐺)))
194193ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ 𝑗 < 𝑀) → ¬ 𝑗 ∈ (𝑀...(deg‘𝐺)))
195192, 194condan 817 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝑗 < 𝑀)
196195adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 < 𝑀)
1979a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ))
19812a1i 11 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0))
199 elfznn0 13520 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...(deg‘𝐺)) → 𝑗 ∈ ℕ0)
200181, 199syl 17 . . . . . . . . . . . . . . . . . . 19 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
201200adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ ℕ0)
202 neqne 2936 . . . . . . . . . . . . . . . . . . 19 (¬ ((coeff‘𝐺)‘𝑗) = 0 → ((coeff‘𝐺)‘𝑗) ≠ 0)
203202adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → ((coeff‘𝐺)‘𝑗) ≠ 0)
204201, 203jca 511 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → (𝑗 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑗) ≠ 0))
205 fveq2 6822 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑗 → ((coeff‘𝐺)‘𝑛) = ((coeff‘𝐺)‘𝑗))
206205neeq1d 2987 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑗 → (((coeff‘𝐺)‘𝑛) ≠ 0 ↔ ((coeff‘𝐺)‘𝑗) ≠ 0))
207206elrab 3647 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ↔ (𝑗 ∈ ℕ0 ∧ ((coeff‘𝐺)‘𝑗) ≠ 0))
208204, 207sylibr 234 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
209208adantll 714 . . . . . . . . . . . . . . 15 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0})
210 infssuzle 12829 . . . . . . . . . . . . . . 15 (({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0} ⊆ (ℤ‘0) ∧ 𝑗 ∈ {𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ 𝑗)
211198, 209, 210syl2anc 584 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < ) ≤ 𝑗)
212197, 211eqbrtrd 5113 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀𝑗)
21339ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑀 ∈ ℝ)
214182zred 12577 . . . . . . . . . . . . . . 15 (𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺))) → 𝑗 ∈ ℝ)
215214ad2antlr 727 . . . . . . . . . . . . . 14 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → 𝑗 ∈ ℝ)
216213, 215lenltd 11259 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → (𝑀𝑗 ↔ ¬ 𝑗 < 𝑀))
217212, 216mpbid 232 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) ∧ ¬ ((coeff‘𝐺)‘𝑗) = 0) → ¬ 𝑗 < 𝑀)
218196, 217condan 817 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((coeff‘𝐺)‘𝑗) = 0)
219218oveq1d 7361 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) = (0 · (𝐴𝑗)))
220126adantr 480 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝐴 ∈ ℂ)
221200adantl 481 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → 𝑗 ∈ ℕ0)
222220, 221expcld 14053 . . . . . . . . . . 11 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (𝐴𝑗) ∈ ℂ)
223222mul02d 11311 . . . . . . . . . 10 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (0 · (𝐴𝑗)) = 0)
224219, 223eqtrd 2766 . . . . . . . . 9 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) = 0)
225224oveq1d 7361 . . . . . . . 8 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = (0 / (𝐴𝑀)))
226126, 146, 32expne0d 14059 . . . . . . . . . 10 (𝜑 → (𝐴𝑀) ≠ 0)
227165, 226div0d 11896 . . . . . . . . 9 (𝜑 → (0 / (𝐴𝑀)) = 0)
228227adantr 480 . . . . . . . 8 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → (0 / (𝐴𝑀)) = 0)
229225, 228eqtrd 2766 . . . . . . 7 ((𝜑𝑗 ∈ ((0...(deg‘𝐺)) ∖ (𝑀...(deg‘𝐺)))) → ((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = 0)
230 fzfid 13880 . . . . . . 7 (𝜑 → (0...(deg‘𝐺)) ∈ Fin)
231176, 178, 229, 230fsumss 15632 . . . . . 6 (𝜑 → Σ𝑗 ∈ (𝑀...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
232133, 173, 2313eqtrd 2770 . . . . 5 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
23386, 52syldan 591 . . . . . . . . . 10 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ)
23453fvmpt2 6940 . . . . . . . . . 10 ((𝑘 ∈ ℕ0 ∧ ((coeff‘𝐺)‘(𝑘 + 𝑀)) ∈ ℤ) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
23586, 233, 234syl2anc 584 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
236235adantlr 715 . . . . . . . 8 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝐼𝑘) = ((coeff‘𝐺)‘(𝑘 + 𝑀)))
237 oveq1 7353 . . . . . . . . 9 (𝑧 = 𝐴 → (𝑧𝑘) = (𝐴𝑘))
238237ad2antlr 727 . . . . . . . 8 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → (𝑧𝑘) = (𝐴𝑘))
239236, 238oveq12d 7364 . . . . . . 7 (((𝜑𝑧 = 𝐴) ∧ 𝑘 ∈ (0...((deg‘𝐺) − 𝑀))) → ((𝐼𝑘) · (𝑧𝑘)) = (((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
240239sumeq2dv 15609 . . . . . 6 ((𝜑𝑧 = 𝐴) → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
241 fzfid 13880 . . . . . . 7 (𝜑 → (0...((deg‘𝐺) − 𝑀)) ∈ Fin)
242241, 129fsumcl 15640 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)) ∈ ℂ)
2432, 240, 126, 242fvmptd 6936 . . . . 5 (𝜑 → (𝐹𝐴) = Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))(((coeff‘𝐺)‘(𝑘 + 𝑀)) · (𝐴𝑘)))
24417, 16coeid2 26172 . . . . . . . 8 ((𝐺 ∈ (Poly‘ℤ) ∧ 𝐴 ∈ ℂ) → (𝐺𝐴) = Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)))
2455, 126, 244syl2anc 584 . . . . . . 7 (𝜑 → (𝐺𝐴) = Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)))
246245oveq1d 7361 . . . . . 6 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = (Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
24783adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (coeff‘𝐺):ℕ0⟶ℂ)
248199adantl 481 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → 𝑗 ∈ ℕ0)
249247, 248ffvelcdmd 7018 . . . . . . . 8 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → ((coeff‘𝐺)‘𝑗) ∈ ℂ)
250126adantr 480 . . . . . . . . 9 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → 𝐴 ∈ ℂ)
251250, 248expcld 14053 . . . . . . . 8 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (𝐴𝑗) ∈ ℂ)
252249, 251mulcld 11132 . . . . . . 7 ((𝜑𝑗 ∈ (0...(deg‘𝐺))) → (((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) ∈ ℂ)
253230, 165, 252, 226fsumdivc 15693 . . . . . 6 (𝜑 → (Σ𝑗 ∈ (0...(deg‘𝐺))(((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
254246, 253eqtrd 2766 . . . . 5 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = Σ𝑗 ∈ (0...(deg‘𝐺))((((coeff‘𝐺)‘𝑗) · (𝐴𝑗)) / (𝐴𝑀)))
255232, 243, 2543eqtr4d 2776 . . . 4 (𝜑 → (𝐹𝐴) = ((𝐺𝐴) / (𝐴𝑀)))
256 elaa2lem.ga . . . . 5 (𝜑 → (𝐺𝐴) = 0)
257256oveq1d 7361 . . . 4 (𝜑 → ((𝐺𝐴) / (𝐴𝑀)) = (0 / (𝐴𝑀)))
258255, 257, 2273eqtrd 2770 . . 3 (𝜑 → (𝐹𝐴) = 0)
259122, 258jca 511 . 2 (𝜑 → (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0))
260 fveq2 6822 . . . . . 6 (𝑓 = 𝐹 → (coeff‘𝑓) = (coeff‘𝐹))
261260fveq1d 6824 . . . . 5 (𝑓 = 𝐹 → ((coeff‘𝑓)‘0) = ((coeff‘𝐹)‘0))
262261neeq1d 2987 . . . 4 (𝑓 = 𝐹 → (((coeff‘𝑓)‘0) ≠ 0 ↔ ((coeff‘𝐹)‘0) ≠ 0))
263 fveq1 6821 . . . . 5 (𝑓 = 𝐹 → (𝑓𝐴) = (𝐹𝐴))
264263eqeq1d 2733 . . . 4 (𝑓 = 𝐹 → ((𝑓𝐴) = 0 ↔ (𝐹𝐴) = 0))
265262, 264anbi12d 632 . . 3 (𝑓 = 𝐹 → ((((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0) ↔ (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0)))
266265rspcev 3577 . 2 ((𝐹 ∈ (Poly‘ℤ) ∧ (((coeff‘𝐹)‘0) ≠ 0 ∧ (𝐹𝐴) = 0)) → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
26757, 259, 266syl2anc 584 1 (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847   = wceq 1541  wcel 2111  wne 2928  wrex 3056  {crab 3395  cdif 3899  wss 3902  c0 4283  ifcif 4475   class class class wbr 5091  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  infcinf 9325  cc 11004  cr 11005  0cc0 11006   + caddc 11009   · cmul 11011   < clt 11146  cle 11147  cmin 11344   / cdiv 11774  0cn0 12381  cz 12468  cuz 12732  ...cfz 13407  cexp 13968  Σcsu 15593  0𝑝c0p 25598  Polycply 26117  coeffccoe 26119  degcdgr 26120  𝔸caa 26250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-0p 25599  df-ply 26121  df-coe 26123  df-dgr 26124  df-aa 26251
This theorem is referenced by:  elaa2  46278
  Copyright terms: Public domain W3C validator