Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpexpmpt Structured version   Visualization version   GIF version

Theorem mzpexpmpt 42701
Description: Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpexpmpt (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐷
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem mzpexpmpt
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7456 . . . . . 6 (𝑎 = 0 → (𝐴𝑎) = (𝐴↑0))
21mpteq2dv 5268 . . . . 5 (𝑎 = 0 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)))
32eleq1d 2829 . . . 4 (𝑎 = 0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉)))
43imbi2d 340 . . 3 (𝑎 = 0 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉))))
5 oveq2 7456 . . . . . 6 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
65mpteq2dv 5268 . . . . 5 (𝑎 = 𝑏 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)))
76eleq1d 2829 . . . 4 (𝑎 = 𝑏 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)))
87imbi2d 340 . . 3 (𝑎 = 𝑏 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉))))
9 oveq2 7456 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴𝑎) = (𝐴↑(𝑏 + 1)))
109mpteq2dv 5268 . . . . 5 (𝑎 = (𝑏 + 1) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))))
1110eleq1d 2829 . . . 4 (𝑎 = (𝑏 + 1) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉)))
1211imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
13 oveq2 7456 . . . . . 6 (𝑎 = 𝐷 → (𝐴𝑎) = (𝐴𝐷))
1413mpteq2dv 5268 . . . . 5 (𝑎 = 𝐷 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)))
1514eleq1d 2829 . . . 4 (𝑎 = 𝐷 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉)))
1615imbi2d 340 . . 3 (𝑎 = 𝐷 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))))
17 mzpf 42692 . . . . . . 7 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ)
18 zsscn 12647 . . . . . . 7 ℤ ⊆ ℂ
19 fss 6763 . . . . . . 7 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ ∧ ℤ ⊆ ℂ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
2017, 18, 19sylancl 585 . . . . . 6 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
21 eqid 2740 . . . . . . 7 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴)
2221fmpt 7144 . . . . . 6 (∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
2320, 22sylibr 234 . . . . 5 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → ∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ)
24 nfra1 3290 . . . . . 6 𝑥𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ
25 rspa 3254 . . . . . . 7 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℂ)
2625exp0d 14190 . . . . . 6 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴↑0) = 1)
2724, 26mpteq2da 5264 . . . . 5 (∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1))
2823, 27syl 17 . . . 4 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1))
29 elfvex 6958 . . . . 5 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
30 1z 12673 . . . . 5 1 ∈ ℤ
31 mzpconstmpt 42696 . . . . 5 ((𝑉 ∈ V ∧ 1 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1) ∈ (mzPoly‘𝑉))
3229, 30, 31sylancl 585 . . . 4 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1) ∈ (mzPoly‘𝑉))
3328, 32eqeltrd 2844 . . 3 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉))
34233ad2ant2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → ∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ)
35 simp1 1136 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → 𝑏 ∈ ℕ0)
36 nfv 1913 . . . . . . . . 9 𝑥 𝑏 ∈ ℕ0
3724, 36nfan 1898 . . . . . . . 8 𝑥(∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0)
3825adantlr 714 . . . . . . . . 9 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℂ)
39 simplr 768 . . . . . . . . 9 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝑏 ∈ ℕ0)
4038, 39expp1d 14197 . . . . . . . 8 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴↑(𝑏 + 1)) = ((𝐴𝑏) · 𝐴))
4137, 40mpteq2da 5264 . . . . . . 7 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)))
4234, 35, 41syl2anc 583 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)))
43 simp3 1138 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉))
44 simp2 1137 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉))
45 mzpmulmpt 42698 . . . . . . 7 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)) ∈ (mzPoly‘𝑉))
4643, 44, 45syl2anc 583 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)) ∈ (mzPoly‘𝑉))
4742, 46eqeltrd 2844 . . . . 5 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))
48473exp 1119 . . . 4 (𝑏 ∈ ℕ0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
4948a2d 29 . . 3 (𝑏 ∈ ℕ0 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
504, 8, 12, 16, 33, 49nn0ind 12738 . 2 (𝐷 ∈ ℕ0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉)))
5150impcom 407 1 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  cmpt 5249  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189  0cn0 12553  cz 12639  cexp 14112  mzPolycmzp 42678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-seq 14053  df-exp 14113  df-mzpcl 42679  df-mzp 42680
This theorem is referenced by:  diophin  42728  rmydioph  42971  rmxdioph  42973  expdiophlem2  42979
  Copyright terms: Public domain W3C validator