| Step | Hyp | Ref
| Expression |
| 1 | | oveq2 7418 |
. . . . . 6
⊢ (𝑎 = 0 → (𝐴↑𝑎) = (𝐴↑0)) |
| 2 | 1 | mpteq2dv 5220 |
. . . . 5
⊢ (𝑎 = 0 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0))) |
| 3 | 2 | eleq1d 2820 |
. . . 4
⊢ (𝑎 = 0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉))) |
| 4 | 3 | imbi2d 340 |
. . 3
⊢ (𝑎 = 0 → (((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) →
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉)))) |
| 5 | | oveq2 7418 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (𝐴↑𝑎) = (𝐴↑𝑏)) |
| 6 | 5 | mpteq2dv 5220 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑏))) |
| 7 | 6 | eleq1d 2820 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉))) |
| 8 | 7 | imbi2d 340 |
. . 3
⊢ (𝑎 = 𝑏 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉)))) |
| 9 | | oveq2 7418 |
. . . . . 6
⊢ (𝑎 = (𝑏 + 1) → (𝐴↑𝑎) = (𝐴↑(𝑏 + 1))) |
| 10 | 9 | mpteq2dv 5220 |
. . . . 5
⊢ (𝑎 = (𝑏 + 1) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1)))) |
| 11 | 10 | eleq1d 2820 |
. . . 4
⊢ (𝑎 = (𝑏 + 1) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))) |
| 12 | 11 | imbi2d 340 |
. . 3
⊢ (𝑎 = (𝑏 + 1) → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉)))) |
| 13 | | oveq2 7418 |
. . . . . 6
⊢ (𝑎 = 𝐷 → (𝐴↑𝑎) = (𝐴↑𝐷)) |
| 14 | 13 | mpteq2dv 5220 |
. . . . 5
⊢ (𝑎 = 𝐷 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝐷))) |
| 15 | 14 | eleq1d 2820 |
. . . 4
⊢ (𝑎 = 𝐷 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝐷)) ∈ (mzPoly‘𝑉))) |
| 16 | 15 | imbi2d 340 |
. . 3
⊢ (𝑎 = 𝐷 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝐷)) ∈ (mzPoly‘𝑉)))) |
| 17 | | mzpf 42726 |
. . . . . . 7
⊢ ((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) →
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴):(ℤ
↑m 𝑉)⟶ℤ) |
| 18 | | zsscn 12601 |
. . . . . . 7
⊢ ℤ
⊆ ℂ |
| 19 | | fss 6727 |
. . . . . . 7
⊢ (((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴):(ℤ
↑m 𝑉)⟶ℤ ∧ ℤ ⊆
ℂ) → (𝑥 ∈
(ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ) |
| 20 | 17, 18, 19 | sylancl 586 |
. . . . . 6
⊢ ((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) →
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴):(ℤ
↑m 𝑉)⟶ℂ) |
| 21 | | eqid 2736 |
. . . . . . 7
⊢ (𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) = (𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) |
| 22 | 21 | fmpt 7105 |
. . . . . 6
⊢
(∀𝑥 ∈
(ℤ ↑m 𝑉)𝐴 ∈ ℂ ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ) |
| 23 | 20, 22 | sylibr 234 |
. . . . 5
⊢ ((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) →
∀𝑥 ∈ (ℤ
↑m 𝑉)𝐴 ∈
ℂ) |
| 24 | | nfra1 3270 |
. . . . . 6
⊢
Ⅎ𝑥∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ |
| 25 | | rspa 3235 |
. . . . . . 7
⊢
((∀𝑥 ∈
(ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℂ) |
| 26 | 25 | exp0d 14163 |
. . . . . 6
⊢
((∀𝑥 ∈
(ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴↑0) = 1) |
| 27 | 24, 26 | mpteq2da 5218 |
. . . . 5
⊢
(∀𝑥 ∈
(ℤ ↑m 𝑉)𝐴 ∈ ℂ → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1)) |
| 28 | 23, 27 | syl 17 |
. . . 4
⊢ ((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) →
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑0)) =
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ 1)) |
| 29 | | elfvex 6919 |
. . . . 5
⊢ ((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) →
𝑉 ∈
V) |
| 30 | | 1z 12627 |
. . . . 5
⊢ 1 ∈
ℤ |
| 31 | | mzpconstmpt 42730 |
. . . . 5
⊢ ((𝑉 ∈ V ∧ 1 ∈
ℤ) → (𝑥 ∈
(ℤ ↑m 𝑉) ↦ 1) ∈ (mzPoly‘𝑉)) |
| 32 | 29, 30, 31 | sylancl 586 |
. . . 4
⊢ ((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) →
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ 1) ∈ (mzPoly‘𝑉)) |
| 33 | 28, 32 | eqeltrd 2835 |
. . 3
⊢ ((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) →
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑0)) ∈
(mzPoly‘𝑉)) |
| 34 | 23 | 3ad2ant2 1134 |
. . . . . . 7
⊢ ((𝑏 ∈ ℕ0
∧ (𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) ∧
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉)) → ∀𝑥 ∈ (ℤ
↑m 𝑉)𝐴 ∈
ℂ) |
| 35 | | simp1 1136 |
. . . . . . 7
⊢ ((𝑏 ∈ ℕ0
∧ (𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) ∧
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉)) → 𝑏 ∈ ℕ0) |
| 36 | | nfv 1914 |
. . . . . . . . 9
⊢
Ⅎ𝑥 𝑏 ∈
ℕ0 |
| 37 | 24, 36 | nfan 1899 |
. . . . . . . 8
⊢
Ⅎ𝑥(∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) |
| 38 | 25 | adantlr 715 |
. . . . . . . . 9
⊢
(((∀𝑥 ∈
(ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ
↑m 𝑉))
→ 𝐴 ∈
ℂ) |
| 39 | | simplr 768 |
. . . . . . . . 9
⊢
(((∀𝑥 ∈
(ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ
↑m 𝑉))
→ 𝑏 ∈
ℕ0) |
| 40 | 38, 39 | expp1d 14170 |
. . . . . . . 8
⊢
(((∀𝑥 ∈
(ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ
↑m 𝑉))
→ (𝐴↑(𝑏 + 1)) = ((𝐴↑𝑏) · 𝐴)) |
| 41 | 37, 40 | mpteq2da 5218 |
. . . . . . 7
⊢
((∀𝑥 ∈
(ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) → (𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑(𝑏 + 1))) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴↑𝑏) · 𝐴))) |
| 42 | 34, 35, 41 | syl2anc 584 |
. . . . . 6
⊢ ((𝑏 ∈ ℕ0
∧ (𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) ∧
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴↑𝑏) · 𝐴))) |
| 43 | | simp3 1138 |
. . . . . . 7
⊢ ((𝑏 ∈ ℕ0
∧ (𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) ∧
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉)) |
| 44 | | simp2 1137 |
. . . . . . 7
⊢ ((𝑏 ∈ ℕ0
∧ (𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) ∧
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉)) |
| 45 | | mzpmulmpt 42732 |
. . . . . . 7
⊢ (((𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴↑𝑏) · 𝐴)) ∈ (mzPoly‘𝑉)) |
| 46 | 43, 44, 45 | syl2anc 584 |
. . . . . 6
⊢ ((𝑏 ∈ ℕ0
∧ (𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) ∧
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴↑𝑏) · 𝐴)) ∈ (mzPoly‘𝑉)) |
| 47 | 42, 46 | eqeltrd 2835 |
. . . . 5
⊢ ((𝑏 ∈ ℕ0
∧ (𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) ∧
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉)) |
| 48 | 47 | 3exp 1119 |
. . . 4
⊢ (𝑏 ∈ ℕ0
→ ((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) →
((𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉)))) |
| 49 | 48 | a2d 29 |
. . 3
⊢ (𝑏 ∈ ℕ0
→ (((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) →
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝑏)) ∈ (mzPoly‘𝑉)) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉)))) |
| 50 | 4, 8, 12, 16, 33, 49 | nn0ind 12693 |
. 2
⊢ (𝐷 ∈ ℕ0
→ ((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) →
(𝑥 ∈ (ℤ
↑m 𝑉)
↦ (𝐴↑𝐷)) ∈ (mzPoly‘𝑉))) |
| 51 | 50 | impcom 407 |
1
⊢ (((𝑥 ∈ (ℤ
↑m 𝑉)
↦ 𝐴) ∈
(mzPoly‘𝑉) ∧
𝐷 ∈
ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑𝐷)) ∈ (mzPoly‘𝑉)) |