Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpexpmpt Structured version   Visualization version   GIF version

Theorem mzpexpmpt 42761
Description: Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpexpmpt (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐷
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem mzpexpmpt
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7440 . . . . . 6 (𝑎 = 0 → (𝐴𝑎) = (𝐴↑0))
21mpteq2dv 5243 . . . . 5 (𝑎 = 0 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)))
32eleq1d 2825 . . . 4 (𝑎 = 0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉)))
43imbi2d 340 . . 3 (𝑎 = 0 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉))))
5 oveq2 7440 . . . . . 6 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
65mpteq2dv 5243 . . . . 5 (𝑎 = 𝑏 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)))
76eleq1d 2825 . . . 4 (𝑎 = 𝑏 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)))
87imbi2d 340 . . 3 (𝑎 = 𝑏 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉))))
9 oveq2 7440 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴𝑎) = (𝐴↑(𝑏 + 1)))
109mpteq2dv 5243 . . . . 5 (𝑎 = (𝑏 + 1) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))))
1110eleq1d 2825 . . . 4 (𝑎 = (𝑏 + 1) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉)))
1211imbi2d 340 . . 3 (𝑎 = (𝑏 + 1) → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
13 oveq2 7440 . . . . . 6 (𝑎 = 𝐷 → (𝐴𝑎) = (𝐴𝐷))
1413mpteq2dv 5243 . . . . 5 (𝑎 = 𝐷 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)))
1514eleq1d 2825 . . . 4 (𝑎 = 𝐷 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉)))
1615imbi2d 340 . . 3 (𝑎 = 𝐷 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))))
17 mzpf 42752 . . . . . . 7 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ)
18 zsscn 12623 . . . . . . 7 ℤ ⊆ ℂ
19 fss 6751 . . . . . . 7 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ ∧ ℤ ⊆ ℂ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
2017, 18, 19sylancl 586 . . . . . 6 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
21 eqid 2736 . . . . . . 7 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴)
2221fmpt 7129 . . . . . 6 (∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
2320, 22sylibr 234 . . . . 5 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → ∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ)
24 nfra1 3283 . . . . . 6 𝑥𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ
25 rspa 3247 . . . . . . 7 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℂ)
2625exp0d 14181 . . . . . 6 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴↑0) = 1)
2724, 26mpteq2da 5239 . . . . 5 (∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1))
2823, 27syl 17 . . . 4 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1))
29 elfvex 6943 . . . . 5 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
30 1z 12649 . . . . 5 1 ∈ ℤ
31 mzpconstmpt 42756 . . . . 5 ((𝑉 ∈ V ∧ 1 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1) ∈ (mzPoly‘𝑉))
3229, 30, 31sylancl 586 . . . 4 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1) ∈ (mzPoly‘𝑉))
3328, 32eqeltrd 2840 . . 3 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉))
34233ad2ant2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → ∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ)
35 simp1 1136 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → 𝑏 ∈ ℕ0)
36 nfv 1913 . . . . . . . . 9 𝑥 𝑏 ∈ ℕ0
3724, 36nfan 1898 . . . . . . . 8 𝑥(∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0)
3825adantlr 715 . . . . . . . . 9 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℂ)
39 simplr 768 . . . . . . . . 9 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝑏 ∈ ℕ0)
4038, 39expp1d 14188 . . . . . . . 8 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴↑(𝑏 + 1)) = ((𝐴𝑏) · 𝐴))
4137, 40mpteq2da 5239 . . . . . . 7 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)))
4234, 35, 41syl2anc 584 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)))
43 simp3 1138 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉))
44 simp2 1137 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉))
45 mzpmulmpt 42758 . . . . . . 7 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)) ∈ (mzPoly‘𝑉))
4643, 44, 45syl2anc 584 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)) ∈ (mzPoly‘𝑉))
4742, 46eqeltrd 2840 . . . . 5 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))
48473exp 1119 . . . 4 (𝑏 ∈ ℕ0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
4948a2d 29 . . 3 (𝑏 ∈ ℕ0 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
504, 8, 12, 16, 33, 49nn0ind 12715 . 2 (𝐷 ∈ ℕ0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉)))
5150impcom 407 1 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  wral 3060  Vcvv 3479  wss 3950  cmpt 5224  wf 6556  cfv 6560  (class class class)co 7432  m cmap 8867  cc 11154  0cc0 11156  1c1 11157   + caddc 11159   · cmul 11161  0cn0 12528  cz 12615  cexp 14103  mzPolycmzp 42738
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-er 8746  df-map 8869  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-n0 12529  df-z 12616  df-uz 12880  df-seq 14044  df-exp 14104  df-mzpcl 42739  df-mzp 42740
This theorem is referenced by:  diophin  42788  rmydioph  43031  rmxdioph  43033  expdiophlem2  43039
  Copyright terms: Public domain W3C validator