Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpexpmpt Structured version   Visualization version   GIF version

Theorem mzpexpmpt 42437
Description: Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpexpmpt (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐷
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem mzpexpmpt
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7422 . . . . . 6 (𝑎 = 0 → (𝐴𝑎) = (𝐴↑0))
21mpteq2dv 5246 . . . . 5 (𝑎 = 0 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)))
32eleq1d 2811 . . . 4 (𝑎 = 0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉)))
43imbi2d 339 . . 3 (𝑎 = 0 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉))))
5 oveq2 7422 . . . . . 6 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
65mpteq2dv 5246 . . . . 5 (𝑎 = 𝑏 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)))
76eleq1d 2811 . . . 4 (𝑎 = 𝑏 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)))
87imbi2d 339 . . 3 (𝑎 = 𝑏 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉))))
9 oveq2 7422 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴𝑎) = (𝐴↑(𝑏 + 1)))
109mpteq2dv 5246 . . . . 5 (𝑎 = (𝑏 + 1) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))))
1110eleq1d 2811 . . . 4 (𝑎 = (𝑏 + 1) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉)))
1211imbi2d 339 . . 3 (𝑎 = (𝑏 + 1) → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
13 oveq2 7422 . . . . . 6 (𝑎 = 𝐷 → (𝐴𝑎) = (𝐴𝐷))
1413mpteq2dv 5246 . . . . 5 (𝑎 = 𝐷 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)))
1514eleq1d 2811 . . . 4 (𝑎 = 𝐷 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉)))
1615imbi2d 339 . . 3 (𝑎 = 𝐷 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))))
17 mzpf 42428 . . . . . . 7 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ)
18 zsscn 12610 . . . . . . 7 ℤ ⊆ ℂ
19 fss 6734 . . . . . . 7 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ ∧ ℤ ⊆ ℂ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
2017, 18, 19sylancl 584 . . . . . 6 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
21 eqid 2726 . . . . . . 7 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴)
2221fmpt 7114 . . . . . 6 (∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
2320, 22sylibr 233 . . . . 5 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → ∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ)
24 nfra1 3272 . . . . . 6 𝑥𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ
25 rspa 3236 . . . . . . 7 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℂ)
2625exp0d 14151 . . . . . 6 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴↑0) = 1)
2724, 26mpteq2da 5242 . . . . 5 (∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1))
2823, 27syl 17 . . . 4 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1))
29 elfvex 6929 . . . . 5 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
30 1z 12636 . . . . 5 1 ∈ ℤ
31 mzpconstmpt 42432 . . . . 5 ((𝑉 ∈ V ∧ 1 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1) ∈ (mzPoly‘𝑉))
3229, 30, 31sylancl 584 . . . 4 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1) ∈ (mzPoly‘𝑉))
3328, 32eqeltrd 2826 . . 3 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉))
34233ad2ant2 1131 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → ∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ)
35 simp1 1133 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → 𝑏 ∈ ℕ0)
36 nfv 1910 . . . . . . . . 9 𝑥 𝑏 ∈ ℕ0
3724, 36nfan 1895 . . . . . . . 8 𝑥(∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0)
3825adantlr 713 . . . . . . . . 9 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℂ)
39 simplr 767 . . . . . . . . 9 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝑏 ∈ ℕ0)
4038, 39expp1d 14158 . . . . . . . 8 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴↑(𝑏 + 1)) = ((𝐴𝑏) · 𝐴))
4137, 40mpteq2da 5242 . . . . . . 7 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)))
4234, 35, 41syl2anc 582 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)))
43 simp3 1135 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉))
44 simp2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉))
45 mzpmulmpt 42434 . . . . . . 7 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)) ∈ (mzPoly‘𝑉))
4643, 44, 45syl2anc 582 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)) ∈ (mzPoly‘𝑉))
4742, 46eqeltrd 2826 . . . . 5 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))
48473exp 1116 . . . 4 (𝑏 ∈ ℕ0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
4948a2d 29 . . 3 (𝑏 ∈ ℕ0 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
504, 8, 12, 16, 33, 49nn0ind 12701 . 2 (𝐷 ∈ ℕ0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉)))
5150impcom 406 1 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  w3a 1084   = wceq 1534  wcel 2099  wral 3051  Vcvv 3463  wss 3947  cmpt 5227  wf 6540  cfv 6544  (class class class)co 7414  m cmap 8845  cc 11145  0cc0 11147  1c1 11148   + caddc 11150   · cmul 11152  0cn0 12516  cz 12602  cexp 14073  mzPolycmzp 42414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-int 4948  df-iun 4996  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-of 7680  df-om 7867  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257  df-n0 12517  df-z 12603  df-uz 12867  df-seq 14014  df-exp 14074  df-mzpcl 42415  df-mzp 42416
This theorem is referenced by:  diophin  42464  rmydioph  42707  rmxdioph  42709  expdiophlem2  42715
  Copyright terms: Public domain W3C validator