Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpexpmpt Structured version   Visualization version   GIF version

Theorem mzpexpmpt 39686
Description: Raise a polynomial function to a (fixed) exponent. (Contributed by Stefan O'Rear, 5-Oct-2014.)
Assertion
Ref Expression
mzpexpmpt (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))
Distinct variable groups:   𝑥,𝑉   𝑥,𝐷
Allowed substitution hint:   𝐴(𝑥)

Proof of Theorem mzpexpmpt
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 7143 . . . . . 6 (𝑎 = 0 → (𝐴𝑎) = (𝐴↑0))
21mpteq2dv 5126 . . . . 5 (𝑎 = 0 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)))
32eleq1d 2874 . . . 4 (𝑎 = 0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉)))
43imbi2d 344 . . 3 (𝑎 = 0 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉))))
5 oveq2 7143 . . . . . 6 (𝑎 = 𝑏 → (𝐴𝑎) = (𝐴𝑏))
65mpteq2dv 5126 . . . . 5 (𝑎 = 𝑏 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)))
76eleq1d 2874 . . . 4 (𝑎 = 𝑏 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)))
87imbi2d 344 . . 3 (𝑎 = 𝑏 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉))))
9 oveq2 7143 . . . . . 6 (𝑎 = (𝑏 + 1) → (𝐴𝑎) = (𝐴↑(𝑏 + 1)))
109mpteq2dv 5126 . . . . 5 (𝑎 = (𝑏 + 1) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))))
1110eleq1d 2874 . . . 4 (𝑎 = (𝑏 + 1) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉)))
1211imbi2d 344 . . 3 (𝑎 = (𝑏 + 1) → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
13 oveq2 7143 . . . . . 6 (𝑎 = 𝐷 → (𝐴𝑎) = (𝐴𝐷))
1413mpteq2dv 5126 . . . . 5 (𝑎 = 𝐷 → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)))
1514eleq1d 2874 . . . 4 (𝑎 = 𝐷 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉) ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉)))
1615imbi2d 344 . . 3 (𝑎 = 𝐷 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑎)) ∈ (mzPoly‘𝑉)) ↔ ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))))
17 mzpf 39677 . . . . . . 7 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ)
18 zsscn 11977 . . . . . . 7 ℤ ⊆ ℂ
19 fss 6501 . . . . . . 7 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℤ ∧ ℤ ⊆ ℂ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
2017, 18, 19sylancl 589 . . . . . 6 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
21 eqid 2798 . . . . . . 7 (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴)
2221fmpt 6851 . . . . . 6 (∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ↔ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴):(ℤ ↑m 𝑉)⟶ℂ)
2320, 22sylibr 237 . . . . 5 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → ∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ)
24 nfra1 3183 . . . . . 6 𝑥𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ
25 rspa 3171 . . . . . . 7 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℂ)
2625exp0d 13500 . . . . . 6 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴↑0) = 1)
2724, 26mpteq2da 5124 . . . . 5 (∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1))
2823, 27syl 17 . . . 4 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1))
29 elfvex 6678 . . . . 5 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → 𝑉 ∈ V)
30 1z 12000 . . . . 5 1 ∈ ℤ
31 mzpconstmpt 39681 . . . . 5 ((𝑉 ∈ V ∧ 1 ∈ ℤ) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1) ∈ (mzPoly‘𝑉))
3229, 30, 31sylancl 589 . . . 4 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 1) ∈ (mzPoly‘𝑉))
3328, 32eqeltrd 2890 . . 3 ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑0)) ∈ (mzPoly‘𝑉))
34233ad2ant2 1131 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → ∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ)
35 simp1 1133 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → 𝑏 ∈ ℕ0)
36 nfv 1915 . . . . . . . . 9 𝑥 𝑏 ∈ ℕ0
3724, 36nfan 1900 . . . . . . . 8 𝑥(∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0)
3825adantlr 714 . . . . . . . . 9 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝐴 ∈ ℂ)
39 simplr 768 . . . . . . . . 9 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → 𝑏 ∈ ℕ0)
4038, 39expp1d 13507 . . . . . . . 8 (((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) ∧ 𝑥 ∈ (ℤ ↑m 𝑉)) → (𝐴↑(𝑏 + 1)) = ((𝐴𝑏) · 𝐴))
4137, 40mpteq2da 5124 . . . . . . 7 ((∀𝑥 ∈ (ℤ ↑m 𝑉)𝐴 ∈ ℂ ∧ 𝑏 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)))
4234, 35, 41syl2anc 587 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) = (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)))
43 simp3 1135 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉))
44 simp2 1134 . . . . . . 7 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉))
45 mzpmulmpt 39683 . . . . . . 7 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)) ∈ (mzPoly‘𝑉))
4643, 44, 45syl2anc 587 . . . . . 6 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ ((𝐴𝑏) · 𝐴)) ∈ (mzPoly‘𝑉))
4742, 46eqeltrd 2890 . . . . 5 ((𝑏 ∈ ℕ0 ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))
48473exp 1116 . . . 4 (𝑏 ∈ ℕ0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
4948a2d 29 . . 3 (𝑏 ∈ ℕ0 → (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝑏)) ∈ (mzPoly‘𝑉)) → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴↑(𝑏 + 1))) ∈ (mzPoly‘𝑉))))
504, 8, 12, 16, 33, 49nn0ind 12065 . 2 (𝐷 ∈ ℕ0 → ((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉)))
5150impcom 411 1 (((𝑥 ∈ (ℤ ↑m 𝑉) ↦ 𝐴) ∈ (mzPoly‘𝑉) ∧ 𝐷 ∈ ℕ0) → (𝑥 ∈ (ℤ ↑m 𝑉) ↦ (𝐴𝐷)) ∈ (mzPoly‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  cmpt 5110  wf 6320  cfv 6324  (class class class)co 7135  m cmap 8389  cc 10524  0cc0 10526  1c1 10527   + caddc 10529   · cmul 10531  0cn0 11885  cz 11969  cexp 13425  mzPolycmzp 39663
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-map 8391  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-n0 11886  df-z 11970  df-uz 12232  df-seq 13365  df-exp 13426  df-mzpcl 39664  df-mzp 39665
This theorem is referenced by:  diophin  39713  rmydioph  39955  rmxdioph  39957  expdiophlem2  39963
  Copyright terms: Public domain W3C validator