ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absexp Unicode version

Theorem absexp 11030
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.)
Assertion
Ref Expression
absexp  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )

Proof of Theorem absexp
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5858 . . . . . 6  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
21fveq2d 5498 . . . . 5  |-  ( j  =  0  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ 0 ) ) )
3 oveq2 5858 . . . . 5  |-  ( j  =  0  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ 0 ) )
42, 3eqeq12d 2185 . . . 4  |-  ( j  =  0  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ 0 ) )  =  ( ( abs `  A ) ^ 0 ) ) )
54imbi2d 229 . . 3  |-  ( j  =  0  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ 0 ) )  =  ( ( abs `  A
) ^ 0 ) ) ) )
6 oveq2 5858 . . . . . 6  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
76fveq2d 5498 . . . . 5  |-  ( j  =  k  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ k ) ) )
8 oveq2 5858 . . . . 5  |-  ( j  =  k  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ k
) )
97, 8eqeq12d 2185 . . . 4  |-  ( j  =  k  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) ) )
109imbi2d 229 . . 3  |-  ( j  =  k  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) ) ) )
11 oveq2 5858 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1211fveq2d 5498 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ ( k  +  1 ) ) ) )
13 oveq2 5858 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) )
1412, 13eqeq12d 2185 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) ) )
1514imbi2d 229 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
16 oveq2 5858 . . . . . 6  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1716fveq2d 5498 . . . . 5  |-  ( j  =  N  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ N ) ) )
18 oveq2 5858 . . . . 5  |-  ( j  =  N  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ N
) )
1917, 18eqeq12d 2185 . . . 4  |-  ( j  =  N  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) ) )
2019imbi2d 229 . . 3  |-  ( j  =  N  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ N
) )  =  ( ( abs `  A
) ^ N ) ) ) )
21 abs1 11023 . . . 4  |-  ( abs `  1 )  =  1
22 exp0 10467 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2322fveq2d 5498 . . . 4  |-  ( A  e.  CC  ->  ( abs `  ( A ^
0 ) )  =  ( abs `  1
) )
24 abscl 11002 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
2524recnd 7935 . . . . 5  |-  ( A  e.  CC  ->  ( abs `  A )  e.  CC )
2625exp0d 10590 . . . 4  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 0 )  =  1 )
2721, 23, 263eqtr4a 2229 . . 3  |-  ( A  e.  CC  ->  ( abs `  ( A ^
0 ) )  =  ( ( abs `  A
) ^ 0 ) )
28 oveq1 5857 . . . . . . . 8  |-  ( ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( ( abs `  ( A ^
k ) )  x.  ( abs `  A
) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
2928adantl 275 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  (
( abs `  ( A ^ k ) )  x.  ( abs `  A
) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
30 expp1 10470 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3130fveq2d 5498 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ ( k  +  1 ) ) )  =  ( abs `  (
( A ^ k
)  x.  A ) ) )
32 expcl 10481 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
33 simpl 108 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  ->  A  e.  CC )
34 absmul 11020 . . . . . . . . . 10  |-  ( ( ( A ^ k
)  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( A ^ k
)  x.  A ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
3532, 33, 34syl2anc 409 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  x.  A ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
3631, 35eqtrd 2203 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  ( A ^ k
) )  x.  ( abs `  A ) ) )
3736adantr 274 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( abs `  ( A ^
( k  +  1 ) ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
38 expp1 10470 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
3925, 38sylan 281 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
4039adantr 274 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  (
( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
4129, 37, 403eqtr4d 2213 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( abs `  ( A ^
( k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
4241exp31 362 . . . . 5  |-  ( A  e.  CC  ->  (
k  e.  NN0  ->  ( ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
4342com12 30 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  CC  ->  (
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
4443a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  ->  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( A  e.  CC  ->  ( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) ) ) )
455, 10, 15, 20, 27, 44nn0ind 9313 . 2  |-  ( N  e.  NN0  ->  ( A  e.  CC  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) ) )
4645impcom 124 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1348    e. wcel 2141   ` cfv 5196  (class class class)co 5850   CCcc 7759   0cc0 7761   1c1 7762    + caddc 7764    x. cmul 7766   NN0cn0 9122   ^cexp 10462   abscabs 10948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4102  ax-sep 4105  ax-nul 4113  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-setind 4519  ax-iinf 4570  ax-cnex 7852  ax-resscn 7853  ax-1cn 7854  ax-1re 7855  ax-icn 7856  ax-addcl 7857  ax-addrcl 7858  ax-mulcl 7859  ax-mulrcl 7860  ax-addcom 7861  ax-mulcom 7862  ax-addass 7863  ax-mulass 7864  ax-distr 7865  ax-i2m1 7866  ax-0lt1 7867  ax-1rid 7868  ax-0id 7869  ax-rnegex 7870  ax-precex 7871  ax-cnre 7872  ax-pre-ltirr 7873  ax-pre-ltwlin 7874  ax-pre-lttrn 7875  ax-pre-apti 7876  ax-pre-ltadd 7877  ax-pre-mulgt0 7878  ax-pre-mulext 7879  ax-arch 7880  ax-caucvg 7881
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-nel 2436  df-ral 2453  df-rex 2454  df-reu 2455  df-rmo 2456  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3526  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-iun 3873  df-br 3988  df-opab 4049  df-mpt 4050  df-tr 4086  df-id 4276  df-po 4279  df-iso 4280  df-iord 4349  df-on 4351  df-ilim 4352  df-suc 4354  df-iom 4573  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-ima 4622  df-iota 5158  df-fun 5198  df-fn 5199  df-f 5200  df-f1 5201  df-fo 5202  df-f1o 5203  df-fv 5204  df-riota 5806  df-ov 5853  df-oprab 5854  df-mpo 5855  df-1st 6116  df-2nd 6117  df-recs 6281  df-frec 6367  df-pnf 7943  df-mnf 7944  df-xr 7945  df-ltxr 7946  df-le 7947  df-sub 8079  df-neg 8080  df-reap 8481  df-ap 8488  df-div 8577  df-inn 8866  df-2 8924  df-3 8925  df-4 8926  df-n0 9123  df-z 9200  df-uz 9475  df-rp 9598  df-seqfrec 10389  df-exp 10463  df-cj 10793  df-re 10794  df-im 10795  df-rsqrt 10949  df-abs 10950
This theorem is referenced by:  absexpzap  11031  abssq  11032  sqabs  11033  absexpd  11143  expcnvap0  11452  expcnv  11454  eftabs  11606  efaddlem  11624
  Copyright terms: Public domain W3C validator