ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  absexp Unicode version

Theorem absexp 10851
Description: Absolute value of positive integer exponentiation. (Contributed by NM, 5-Jan-2006.)
Assertion
Ref Expression
absexp  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )

Proof of Theorem absexp
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5782 . . . . . 6  |-  ( j  =  0  ->  ( A ^ j )  =  ( A ^ 0 ) )
21fveq2d 5425 . . . . 5  |-  ( j  =  0  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ 0 ) ) )
3 oveq2 5782 . . . . 5  |-  ( j  =  0  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ 0 ) )
42, 3eqeq12d 2154 . . . 4  |-  ( j  =  0  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ 0 ) )  =  ( ( abs `  A ) ^ 0 ) ) )
54imbi2d 229 . . 3  |-  ( j  =  0  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ 0 ) )  =  ( ( abs `  A
) ^ 0 ) ) ) )
6 oveq2 5782 . . . . . 6  |-  ( j  =  k  ->  ( A ^ j )  =  ( A ^ k
) )
76fveq2d 5425 . . . . 5  |-  ( j  =  k  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ k ) ) )
8 oveq2 5782 . . . . 5  |-  ( j  =  k  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ k
) )
97, 8eqeq12d 2154 . . . 4  |-  ( j  =  k  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) ) )
109imbi2d 229 . . 3  |-  ( j  =  k  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ k
) )  =  ( ( abs `  A
) ^ k ) ) ) )
11 oveq2 5782 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  ( A ^ j )  =  ( A ^ (
k  +  1 ) ) )
1211fveq2d 5425 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ ( k  +  1 ) ) ) )
13 oveq2 5782 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) )
1412, 13eqeq12d 2154 . . . 4  |-  ( j  =  ( k  +  1 )  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) ) )
1514imbi2d 229 . . 3  |-  ( j  =  ( k  +  1 )  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
16 oveq2 5782 . . . . . 6  |-  ( j  =  N  ->  ( A ^ j )  =  ( A ^ N
) )
1716fveq2d 5425 . . . . 5  |-  ( j  =  N  ->  ( abs `  ( A ^
j ) )  =  ( abs `  ( A ^ N ) ) )
18 oveq2 5782 . . . . 5  |-  ( j  =  N  ->  (
( abs `  A
) ^ j )  =  ( ( abs `  A ) ^ N
) )
1917, 18eqeq12d 2154 . . . 4  |-  ( j  =  N  ->  (
( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
)  <->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) ) )
2019imbi2d 229 . . 3  |-  ( j  =  N  ->  (
( A  e.  CC  ->  ( abs `  ( A ^ j ) )  =  ( ( abs `  A ) ^ j
) )  <->  ( A  e.  CC  ->  ( abs `  ( A ^ N
) )  =  ( ( abs `  A
) ^ N ) ) ) )
21 abs1 10844 . . . 4  |-  ( abs `  1 )  =  1
22 exp0 10297 . . . . 5  |-  ( A  e.  CC  ->  ( A ^ 0 )  =  1 )
2322fveq2d 5425 . . . 4  |-  ( A  e.  CC  ->  ( abs `  ( A ^
0 ) )  =  ( abs `  1
) )
24 abscl 10823 . . . . . 6  |-  ( A  e.  CC  ->  ( abs `  A )  e.  RR )
2524recnd 7794 . . . . 5  |-  ( A  e.  CC  ->  ( abs `  A )  e.  CC )
2625exp0d 10418 . . . 4  |-  ( A  e.  CC  ->  (
( abs `  A
) ^ 0 )  =  1 )
2721, 23, 263eqtr4a 2198 . . 3  |-  ( A  e.  CC  ->  ( abs `  ( A ^
0 ) )  =  ( ( abs `  A
) ^ 0 ) )
28 oveq1 5781 . . . . . . . 8  |-  ( ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( ( abs `  ( A ^
k ) )  x.  ( abs `  A
) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
2928adantl 275 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  (
( abs `  ( A ^ k ) )  x.  ( abs `  A
) )  =  ( ( ( abs `  A
) ^ k )  x.  ( abs `  A
) ) )
30 expp1 10300 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ (
k  +  1 ) )  =  ( ( A ^ k )  x.  A ) )
3130fveq2d 5425 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ ( k  +  1 ) ) )  =  ( abs `  (
( A ^ k
)  x.  A ) ) )
32 expcl 10311 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( A ^ k
)  e.  CC )
33 simpl 108 . . . . . . . . . 10  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  ->  A  e.  CC )
34 absmul 10841 . . . . . . . . . 10  |-  ( ( ( A ^ k
)  e.  CC  /\  A  e.  CC )  ->  ( abs `  (
( A ^ k
)  x.  A ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
3532, 33, 34syl2anc 408 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  (
( A ^ k
)  x.  A ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
3631, 35eqtrd 2172 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  ( A ^ k
) )  x.  ( abs `  A ) ) )
3736adantr 274 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( abs `  ( A ^
( k  +  1 ) ) )  =  ( ( abs `  ( A ^ k ) )  x.  ( abs `  A
) ) )
38 expp1 10300 . . . . . . . . 9  |-  ( ( ( abs `  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
3925, 38sylan 281 . . . . . . . 8  |-  ( ( A  e.  CC  /\  k  e.  NN0 )  -> 
( ( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
4039adantr 274 . . . . . . 7  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  (
( abs `  A
) ^ ( k  +  1 ) )  =  ( ( ( abs `  A ) ^ k )  x.  ( abs `  A
) ) )
4129, 37, 403eqtr4d 2182 . . . . . 6  |-  ( ( ( A  e.  CC  /\  k  e.  NN0 )  /\  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( abs `  ( A ^
( k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) )
4241exp31 361 . . . . 5  |-  ( A  e.  CC  ->  (
k  e.  NN0  ->  ( ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
4342com12 30 . . . 4  |-  ( k  e.  NN0  ->  ( A  e.  CC  ->  (
( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
)  ->  ( abs `  ( A ^ (
k  +  1 ) ) )  =  ( ( abs `  A
) ^ ( k  +  1 ) ) ) ) )
4443a2d 26 . . 3  |-  ( k  e.  NN0  ->  ( ( A  e.  CC  ->  ( abs `  ( A ^ k ) )  =  ( ( abs `  A ) ^ k
) )  ->  ( A  e.  CC  ->  ( abs `  ( A ^ ( k  +  1 ) ) )  =  ( ( abs `  A ) ^ (
k  +  1 ) ) ) ) )
455, 10, 15, 20, 27, 44nn0ind 9165 . 2  |-  ( N  e.  NN0  ->  ( A  e.  CC  ->  ( abs `  ( A ^ N ) )  =  ( ( abs `  A
) ^ N ) ) )
4645impcom 124 1  |-  ( ( A  e.  CC  /\  N  e.  NN0 )  -> 
( abs `  ( A ^ N ) )  =  ( ( abs `  A ) ^ N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   ` cfv 5123  (class class class)co 5774   CCcc 7618   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625   NN0cn0 8977   ^cexp 10292   abscabs 10769
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771
This theorem is referenced by:  absexpzap  10852  abssq  10853  sqabs  10854  absexpd  10964  expcnvap0  11271  expcnv  11273  eftabs  11362  efaddlem  11380
  Copyright terms: Public domain W3C validator