ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cncongr Unicode version

Theorem cncongr 11986
Description: Cancellability of Congruences (see ProofWiki "Cancellability of Congruences, https://proofwiki.org/wiki/Cancellability_of_Congruences, 10-Jul-2021): Two products with a common factor are congruent modulo a positive integer iff the other factors are congruent modulo the integer divided by the greates common divisor of the integer and the common factor. See also Theorem 5.4 "Cancellation law" in [ApostolNT] p. 109. (Contributed by AV, 13-Jul-2021.)
Assertion
Ref Expression
cncongr  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
)  <->  ( A  mod  M )  =  ( B  mod  M ) ) )

Proof of Theorem cncongr
StepHypRef Expression
1 cncongr1 11984 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
)  ->  ( A  mod  M )  =  ( B  mod  M ) ) )
2 cncongr2 11985 . 2  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( A  mod  M )  =  ( B  mod  M
)  ->  ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C
)  mod  N )
) )
31, 2impbid 128 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  ZZ )  /\  ( N  e.  NN  /\  M  =  ( N  /  ( C  gcd  N ) ) ) )  ->  ( ( ( A  x.  C )  mod  N )  =  ( ( B  x.  C )  mod  N
)  <->  ( A  mod  M )  =  ( B  mod  M ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128  (class class class)co 5825    x. cmul 7738    / cdiv 8546   NNcn 8834   ZZcz 9168    mod cmo 10225    gcd cgcd 11833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4080  ax-sep 4083  ax-nul 4091  ax-pow 4136  ax-pr 4170  ax-un 4394  ax-setind 4497  ax-iinf 4548  ax-cnex 7824  ax-resscn 7825  ax-1cn 7826  ax-1re 7827  ax-icn 7828  ax-addcl 7829  ax-addrcl 7830  ax-mulcl 7831  ax-mulrcl 7832  ax-addcom 7833  ax-mulcom 7834  ax-addass 7835  ax-mulass 7836  ax-distr 7837  ax-i2m1 7838  ax-0lt1 7839  ax-1rid 7840  ax-0id 7841  ax-rnegex 7842  ax-precex 7843  ax-cnre 7844  ax-pre-ltirr 7845  ax-pre-ltwlin 7846  ax-pre-lttrn 7847  ax-pre-apti 7848  ax-pre-ltadd 7849  ax-pre-mulgt0 7850  ax-pre-mulext 7851  ax-arch 7852  ax-caucvg 7853
This theorem depends on definitions:  df-bi 116  df-stab 817  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rmo 2443  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-int 3809  df-iun 3852  df-br 3967  df-opab 4027  df-mpt 4028  df-tr 4064  df-id 4254  df-po 4257  df-iso 4258  df-iord 4327  df-on 4329  df-ilim 4330  df-suc 4332  df-iom 4551  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-f 5175  df-f1 5176  df-fo 5177  df-f1o 5178  df-fv 5179  df-riota 5781  df-ov 5828  df-oprab 5829  df-mpo 5830  df-1st 6089  df-2nd 6090  df-recs 6253  df-frec 6339  df-sup 6929  df-pnf 7915  df-mnf 7916  df-xr 7917  df-ltxr 7918  df-le 7919  df-sub 8049  df-neg 8050  df-reap 8451  df-ap 8458  df-div 8547  df-inn 8835  df-2 8893  df-3 8894  df-4 8895  df-n0 9092  df-z 9169  df-uz 9441  df-q 9530  df-rp 9562  df-fz 9914  df-fzo 10046  df-fl 10173  df-mod 10226  df-seqfrec 10349  df-exp 10423  df-cj 10746  df-re 10747  df-im 10748  df-rsqrt 10902  df-abs 10903  df-dvds 11688  df-gcd 11834
This theorem is referenced by:  cncongrcoprm  11987
  Copyright terms: Public domain W3C validator