ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cru GIF version

Theorem cru 8646
Description: The representation of complex numbers in terms of real and imaginary parts is unique. Proposition 10-1.3 of [Gleason] p. 130. (Contributed by NM, 9-May-1999.) (Proof shortened by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
cru (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))

Proof of Theorem cru
StepHypRef Expression
1 simplrl 535 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 ∈ ℝ)
21recnd 8072 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 ∈ ℂ)
3 simplll 533 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 ∈ ℝ)
43recnd 8072 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 ∈ ℂ)
5 simpr 110 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
6 ax-icn 7991 . . . . . . . . . . 11 i ∈ ℂ
76a1i 9 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → i ∈ ℂ)
8 simpllr 534 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 ∈ ℝ)
98recnd 8072 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 ∈ ℂ)
107, 9mulcld 8064 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐵) ∈ ℂ)
11 simplrr 536 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐷 ∈ ℝ)
1211recnd 8072 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐷 ∈ ℂ)
137, 12mulcld 8064 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐷) ∈ ℂ)
144, 10, 2, 13addsubeq4d 8405 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐶𝐴) = ((i · 𝐵) − (i · 𝐷))))
155, 14mpbid 147 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) = ((i · 𝐵) − (i · 𝐷)))
168, 11resubcld 8424 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐵𝐷) ∈ ℝ)
177, 9, 12subdid 8457 . . . . . . . . . . . . 13 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) = ((i · 𝐵) − (i · 𝐷)))
1817, 15eqtr4d 2232 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) = (𝐶𝐴))
191, 3resubcld 8424 . . . . . . . . . . . 12 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) ∈ ℝ)
2018, 19eqeltrd 2273 . . . . . . . . . . 11 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵𝐷)) ∈ ℝ)
21 rimul 8629 . . . . . . . . . . 11 (((𝐵𝐷) ∈ ℝ ∧ (i · (𝐵𝐷)) ∈ ℝ) → (𝐵𝐷) = 0)
2216, 20, 21syl2anc 411 . . . . . . . . . 10 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐵𝐷) = 0)
239, 12, 22subeq0d 8362 . . . . . . . . 9 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 = 𝐷)
2423oveq2d 5941 . . . . . . . 8 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐵) = (i · 𝐷))
2524oveq1d 5940 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((i · 𝐵) − (i · 𝐷)) = ((i · 𝐷) − (i · 𝐷)))
2613subidd 8342 . . . . . . 7 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((i · 𝐷) − (i · 𝐷)) = 0)
2715, 25, 263eqtrd 2233 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶𝐴) = 0)
282, 4, 27subeq0d 8362 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 = 𝐴)
2928eqcomd 2202 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 = 𝐶)
3029, 23jca 306 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐴 = 𝐶𝐵 = 𝐷))
3130ex 115 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) → (𝐴 = 𝐶𝐵 = 𝐷)))
32 oveq2 5933 . . 3 (𝐵 = 𝐷 → (i · 𝐵) = (i · 𝐷))
33 oveq12 5934 . . 3 ((𝐴 = 𝐶 ∧ (i · 𝐵) = (i · 𝐷)) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
3432, 33sylan2 286 . 2 ((𝐴 = 𝐶𝐵 = 𝐷) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)))
3531, 34impbid1 142 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶𝐵 = 𝐷)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  (class class class)co 5925  cc 7894  cr 7895  0cc0 7896  ici 7898   + caddc 7899   · cmul 7901  cmin 8214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-sub 8216  df-neg 8217  df-reap 8619
This theorem is referenced by:  apreim  8647  apti  8666  creur  9003  creui  9004  cnref1o  9742  efieq  11917
  Copyright terms: Public domain W3C validator