Proof of Theorem cru
Step | Hyp | Ref
| Expression |
1 | | simplrl 525 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 ∈ ℝ) |
2 | 1 | recnd 7927 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 ∈ ℂ) |
3 | | simplll 523 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 ∈ ℝ) |
4 | 3 | recnd 7927 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 ∈ ℂ) |
5 | | simpr 109 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) |
6 | | ax-icn 7848 |
. . . . . . . . . . 11
⊢ i ∈
ℂ |
7 | 6 | a1i 9 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → i ∈
ℂ) |
8 | | simpllr 524 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 ∈ ℝ) |
9 | 8 | recnd 7927 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 ∈ ℂ) |
10 | 7, 9 | mulcld 7919 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐵) ∈ ℂ) |
11 | | simplrr 526 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐷 ∈ ℝ) |
12 | 11 | recnd 7927 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐷 ∈ ℂ) |
13 | 7, 12 | mulcld 7919 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐷) ∈ ℂ) |
14 | 4, 10, 2, 13 | addsubeq4d 8260 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐶 − 𝐴) = ((i · 𝐵) − (i · 𝐷)))) |
15 | 5, 14 | mpbid 146 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶 − 𝐴) = ((i · 𝐵) − (i · 𝐷))) |
16 | 8, 11 | resubcld 8279 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐵 − 𝐷) ∈ ℝ) |
17 | 7, 9, 12 | subdid 8312 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵 − 𝐷)) = ((i · 𝐵) − (i · 𝐷))) |
18 | 17, 15 | eqtr4d 2201 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵 − 𝐷)) = (𝐶 − 𝐴)) |
19 | 1, 3 | resubcld 8279 |
. . . . . . . . . . . 12
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶 − 𝐴) ∈ ℝ) |
20 | 18, 19 | eqeltrd 2243 |
. . . . . . . . . . 11
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · (𝐵 − 𝐷)) ∈ ℝ) |
21 | | rimul 8483 |
. . . . . . . . . . 11
⊢ (((𝐵 − 𝐷) ∈ ℝ ∧ (i · (𝐵 − 𝐷)) ∈ ℝ) → (𝐵 − 𝐷) = 0) |
22 | 16, 20, 21 | syl2anc 409 |
. . . . . . . . . 10
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐵 − 𝐷) = 0) |
23 | 9, 12, 22 | subeq0d 8217 |
. . . . . . . . 9
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐵 = 𝐷) |
24 | 23 | oveq2d 5858 |
. . . . . . . 8
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (i · 𝐵) = (i · 𝐷)) |
25 | 24 | oveq1d 5857 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((i · 𝐵) − (i · 𝐷)) = ((i · 𝐷) − (i · 𝐷))) |
26 | 13 | subidd 8197 |
. . . . . . 7
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → ((i · 𝐷) − (i · 𝐷)) = 0) |
27 | 15, 25, 26 | 3eqtrd 2202 |
. . . . . 6
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐶 − 𝐴) = 0) |
28 | 2, 4, 27 | subeq0d 8217 |
. . . . 5
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐶 = 𝐴) |
29 | 28 | eqcomd 2171 |
. . . 4
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → 𝐴 = 𝐶) |
30 | 29, 23 | jca 304 |
. . 3
⊢ ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) ∧ (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷)) |
31 | 30 | ex 114 |
. 2
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) → (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |
32 | | oveq2 5850 |
. . 3
⊢ (𝐵 = 𝐷 → (i · 𝐵) = (i · 𝐷)) |
33 | | oveq12 5851 |
. . 3
⊢ ((𝐴 = 𝐶 ∧ (i · 𝐵) = (i · 𝐷)) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) |
34 | 32, 33 | sylan2 284 |
. 2
⊢ ((𝐴 = 𝐶 ∧ 𝐵 = 𝐷) → (𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷))) |
35 | 31, 34 | impbid1 141 |
1
⊢ (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ)) → ((𝐴 + (i · 𝐵)) = (𝐶 + (i · 𝐷)) ↔ (𝐴 = 𝐶 ∧ 𝐵 = 𝐷))) |