| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dflidl2rng | Unicode version | ||
| Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
| Ref | Expression |
|---|---|
| dflidl2rng.u |
|
| dflidl2rng.b |
|
| dflidl2rng.t |
|
| Ref | Expression |
|---|---|
| dflidl2rng |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll 527 |
. . . . 5
| |
| 2 | simpr 110 |
. . . . 5
| |
| 3 | eqid 2206 |
. . . . . . 7
| |
| 4 | 3 | subg0cl 13568 |
. . . . . 6
|
| 5 | 4 | ad2antlr 489 |
. . . . 5
|
| 6 | 1, 2, 5 | 3jca 1180 |
. . . 4
|
| 7 | dflidl2rng.b |
. . . . 5
| |
| 8 | dflidl2rng.t |
. . . . 5
| |
| 9 | dflidl2rng.u |
. . . . 5
| |
| 10 | 3, 7, 8, 9 | rnglidlmcl 14292 |
. . . 4
|
| 11 | 6, 10 | sylan 283 |
. . 3
|
| 12 | 11 | ralrimivva 2589 |
. 2
|
| 13 | 7 | subgss 13560 |
. . . 4
|
| 14 | 13 | ad2antlr 489 |
. . 3
|
| 15 | elex2 2790 |
. . . . 5
| |
| 16 | 4, 15 | syl 14 |
. . . 4
|
| 17 | 16 | ad2antlr 489 |
. . 3
|
| 18 | eqid 2206 |
. . . . . . . . 9
| |
| 19 | 18 | subgcl 13570 |
. . . . . . . 8
|
| 20 | 19 | ad5ant245 1239 |
. . . . . . 7
|
| 21 | 20 | ralrimiva 2580 |
. . . . . 6
|
| 22 | 21 | ex 115 |
. . . . 5
|
| 23 | 22 | ralimdvva 2576 |
. . . 4
|
| 24 | 23 | imp 124 |
. . 3
|
| 25 | 9, 7, 18, 8 | islidlm 14291 |
. . 3
|
| 26 | 14, 17, 24, 25 | syl3anbrc 1184 |
. 2
|
| 27 | 12, 26 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-addcom 8038 ax-addass 8040 ax-i2m1 8043 ax-0lt1 8044 ax-0id 8046 ax-rnegex 8047 ax-pre-ltirr 8050 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-ltxr 8125 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-ndx 12885 df-slot 12886 df-base 12888 df-sets 12889 df-iress 12890 df-plusg 12972 df-mulr 12973 df-sca 12975 df-vsca 12976 df-ip 12977 df-0g 13140 df-mgm 13238 df-sgrp 13284 df-mnd 13299 df-grp 13385 df-subg 13556 df-abl 13673 df-mgp 13733 df-rng 13745 df-lssm 14165 df-sra 14247 df-rgmod 14248 df-lidl 14281 |
| This theorem is referenced by: isridlrng 14294 dflidl2 14300 df2idl2rng 14320 |
| Copyright terms: Public domain | W3C validator |