ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflidl2rng Unicode version

Theorem dflidl2rng 14293
Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
dflidl2rng.u  |-  U  =  (LIdeal `  R )
dflidl2rng.b  |-  B  =  ( Base `  R
)
dflidl2rng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dflidl2rng  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( x  .x.  y
)  e.  I ) )
Distinct variable groups:    x, B, y   
x, I, y    x, R, y    x, U, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem dflidl2rng
Dummy variables  z  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . 5  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  I  e.  U )  ->  R  e. Rng )
2 simpr 110 . . . . 5  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  I  e.  U )  ->  I  e.  U )
3 eqid 2206 . . . . . . 7  |-  ( 0g
`  R )  =  ( 0g `  R
)
43subg0cl 13568 . . . . . 6  |-  ( I  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  I
)
54ad2antlr 489 . . . . 5  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  I  e.  U )  ->  ( 0g `  R )  e.  I )
61, 2, 53jca 1180 . . . 4  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  I  e.  U )  ->  ( R  e. Rng  /\  I  e.  U  /\  ( 0g
`  R )  e.  I ) )
7 dflidl2rng.b . . . . 5  |-  B  =  ( Base `  R
)
8 dflidl2rng.t . . . . 5  |-  .x.  =  ( .r `  R )
9 dflidl2rng.u . . . . 5  |-  U  =  (LIdeal `  R )
103, 7, 8, 9rnglidlmcl 14292 . . . 4  |-  ( ( ( R  e. Rng  /\  I  e.  U  /\  ( 0g `  R )  e.  I )  /\  ( x  e.  B  /\  y  e.  I
) )  ->  (
x  .x.  y )  e.  I )
116, 10sylan 283 . . 3  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  I  e.  U )  /\  ( x  e.  B  /\  y  e.  I
) )  ->  (
x  .x.  y )  e.  I )
1211ralrimivva 2589 . 2  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  I  e.  U )  ->  A. x  e.  B  A. y  e.  I  ( x  .x.  y )  e.  I
)
137subgss 13560 . . . 4  |-  ( I  e.  (SubGrp `  R
)  ->  I  C_  B
)
1413ad2antlr 489 . . 3  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  A. x  e.  B  A. y  e.  I  (
x  .x.  y )  e.  I )  ->  I  C_  B )
15 elex2 2790 . . . . 5  |-  ( ( 0g `  R )  e.  I  ->  E. j 
j  e.  I )
164, 15syl 14 . . . 4  |-  ( I  e.  (SubGrp `  R
)  ->  E. j 
j  e.  I )
1716ad2antlr 489 . . 3  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  A. x  e.  B  A. y  e.  I  (
x  .x.  y )  e.  I )  ->  E. j 
j  e.  I )
18 eqid 2206 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
1918subgcl 13570 . . . . . . . 8  |-  ( ( I  e.  (SubGrp `  R )  /\  (
x  .x.  y )  e.  I  /\  z  e.  I )  ->  (
( x  .x.  y
) ( +g  `  R
) z )  e.  I )
2019ad5ant245 1239 . . . . . . 7  |-  ( ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  ( x  e.  B  /\  y  e.  I ) )  /\  ( x  .x.  y )  e.  I )  /\  z  e.  I )  ->  ( ( x  .x.  y ) ( +g  `  R ) z )  e.  I )
2120ralrimiva 2580 . . . . . 6  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  ( x  e.  B  /\  y  e.  I
) )  /\  (
x  .x.  y )  e.  I )  ->  A. z  e.  I  ( (
x  .x.  y )
( +g  `  R ) z )  e.  I
)
2221ex 115 . . . . 5  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  (
x  e.  B  /\  y  e.  I )
)  ->  ( (
x  .x.  y )  e.  I  ->  A. z  e.  I  ( (
x  .x.  y )
( +g  `  R ) z )  e.  I
) )
2322ralimdvva 2576 . . . 4  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x  .x.  y )  e.  I  ->  A. x  e.  B  A. y  e.  I  A. z  e.  I  ( (
x  .x.  y )
( +g  `  R ) z )  e.  I
) )
2423imp 124 . . 3  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  A. x  e.  B  A. y  e.  I  (
x  .x.  y )  e.  I )  ->  A. x  e.  B  A. y  e.  I  A. z  e.  I  ( (
x  .x.  y )
( +g  `  R ) z )  e.  I
)
259, 7, 18, 8islidlm 14291 . . 3  |-  ( I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. y  e.  I  A. z  e.  I  (
( x  .x.  y
) ( +g  `  R
) z )  e.  I ) )
2614, 17, 24, 25syl3anbrc 1184 . 2  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  A. x  e.  B  A. y  e.  I  (
x  .x.  y )  e.  I )  ->  I  e.  U )
2712, 26impbida 596 1  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( x  .x.  y
)  e.  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2177   A.wral 2485    C_ wss 3168   ` cfv 5277  (class class class)co 5954   Basecbs 12882   +g cplusg 12959   .rcmulr 12960   0gc0g 13138  SubGrpcsubg 13553  Rngcrng 13744  LIdealclidl 14279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4164  ax-sep 4167  ax-pow 4223  ax-pr 4258  ax-un 4485  ax-setind 4590  ax-cnex 8029  ax-resscn 8030  ax-1cn 8031  ax-1re 8032  ax-icn 8033  ax-addcl 8034  ax-addrcl 8035  ax-mulcl 8036  ax-addcom 8038  ax-addass 8040  ax-i2m1 8043  ax-0lt1 8044  ax-0id 8046  ax-rnegex 8047  ax-pre-ltirr 8050  ax-pre-lttrn 8052  ax-pre-ltadd 8054
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3001  df-csb 3096  df-dif 3170  df-un 3172  df-in 3174  df-ss 3181  df-nul 3463  df-pw 3620  df-sn 3641  df-pr 3642  df-op 3644  df-uni 3854  df-int 3889  df-iun 3932  df-br 4049  df-opab 4111  df-mpt 4112  df-id 4345  df-xp 4686  df-rel 4687  df-cnv 4688  df-co 4689  df-dm 4690  df-rn 4691  df-res 4692  df-ima 4693  df-iota 5238  df-fun 5279  df-fn 5280  df-f 5281  df-f1 5282  df-fo 5283  df-f1o 5284  df-fv 5285  df-riota 5909  df-ov 5957  df-oprab 5958  df-mpo 5959  df-pnf 8122  df-mnf 8123  df-ltxr 8125  df-inn 9050  df-2 9108  df-3 9109  df-4 9110  df-5 9111  df-6 9112  df-7 9113  df-8 9114  df-ndx 12885  df-slot 12886  df-base 12888  df-sets 12889  df-iress 12890  df-plusg 12972  df-mulr 12973  df-sca 12975  df-vsca 12976  df-ip 12977  df-0g 13140  df-mgm 13238  df-sgrp 13284  df-mnd 13299  df-grp 13385  df-subg 13556  df-abl 13673  df-mgp 13733  df-rng 13745  df-lssm 14165  df-sra 14247  df-rgmod 14248  df-lidl 14281
This theorem is referenced by:  isridlrng  14294  dflidl2  14300  df2idl2rng  14320
  Copyright terms: Public domain W3C validator