ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflidl2rng Unicode version

Theorem dflidl2rng 14430
Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
dflidl2rng.u  |-  U  =  (LIdeal `  R )
dflidl2rng.b  |-  B  =  ( Base `  R
)
dflidl2rng.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dflidl2rng  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( x  .x.  y
)  e.  I ) )
Distinct variable groups:    x, B, y   
x, I, y    x, R, y    x, U, y
Allowed substitution hints:    .x. ( x, y)

Proof of Theorem dflidl2rng
Dummy variables  z  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . 5  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  I  e.  U )  ->  R  e. Rng )
2 simpr 110 . . . . 5  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  I  e.  U )  ->  I  e.  U )
3 eqid 2229 . . . . . . 7  |-  ( 0g
`  R )  =  ( 0g `  R
)
43subg0cl 13705 . . . . . 6  |-  ( I  e.  (SubGrp `  R
)  ->  ( 0g `  R )  e.  I
)
54ad2antlr 489 . . . . 5  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  I  e.  U )  ->  ( 0g `  R )  e.  I )
61, 2, 53jca 1201 . . . 4  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  I  e.  U )  ->  ( R  e. Rng  /\  I  e.  U  /\  ( 0g
`  R )  e.  I ) )
7 dflidl2rng.b . . . . 5  |-  B  =  ( Base `  R
)
8 dflidl2rng.t . . . . 5  |-  .x.  =  ( .r `  R )
9 dflidl2rng.u . . . . 5  |-  U  =  (LIdeal `  R )
103, 7, 8, 9rnglidlmcl 14429 . . . 4  |-  ( ( ( R  e. Rng  /\  I  e.  U  /\  ( 0g `  R )  e.  I )  /\  ( x  e.  B  /\  y  e.  I
) )  ->  (
x  .x.  y )  e.  I )
116, 10sylan 283 . . 3  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  I  e.  U )  /\  ( x  e.  B  /\  y  e.  I
) )  ->  (
x  .x.  y )  e.  I )
1211ralrimivva 2612 . 2  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  I  e.  U )  ->  A. x  e.  B  A. y  e.  I  ( x  .x.  y )  e.  I
)
137subgss 13697 . . . 4  |-  ( I  e.  (SubGrp `  R
)  ->  I  C_  B
)
1413ad2antlr 489 . . 3  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  A. x  e.  B  A. y  e.  I  (
x  .x.  y )  e.  I )  ->  I  C_  B )
15 elex2 2816 . . . . 5  |-  ( ( 0g `  R )  e.  I  ->  E. j 
j  e.  I )
164, 15syl 14 . . . 4  |-  ( I  e.  (SubGrp `  R
)  ->  E. j 
j  e.  I )
1716ad2antlr 489 . . 3  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  A. x  e.  B  A. y  e.  I  (
x  .x.  y )  e.  I )  ->  E. j 
j  e.  I )
18 eqid 2229 . . . . . . . . 9  |-  ( +g  `  R )  =  ( +g  `  R )
1918subgcl 13707 . . . . . . . 8  |-  ( ( I  e.  (SubGrp `  R )  /\  (
x  .x.  y )  e.  I  /\  z  e.  I )  ->  (
( x  .x.  y
) ( +g  `  R
) z )  e.  I )
2019ad5ant245 1260 . . . . . . 7  |-  ( ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  ( x  e.  B  /\  y  e.  I ) )  /\  ( x  .x.  y )  e.  I )  /\  z  e.  I )  ->  ( ( x  .x.  y ) ( +g  `  R ) z )  e.  I )
2120ralrimiva 2603 . . . . . 6  |-  ( ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R ) )  /\  ( x  e.  B  /\  y  e.  I
) )  /\  (
x  .x.  y )  e.  I )  ->  A. z  e.  I  ( (
x  .x.  y )
( +g  `  R ) z )  e.  I
)
2221ex 115 . . . . 5  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  (
x  e.  B  /\  y  e.  I )
)  ->  ( (
x  .x.  y )  e.  I  ->  A. z  e.  I  ( (
x  .x.  y )
( +g  `  R ) z )  e.  I
) )
2322ralimdvva 2599 . . . 4  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( A. x  e.  B  A. y  e.  I  (
x  .x.  y )  e.  I  ->  A. x  e.  B  A. y  e.  I  A. z  e.  I  ( (
x  .x.  y )
( +g  `  R ) z )  e.  I
) )
2423imp 124 . . 3  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  A. x  e.  B  A. y  e.  I  (
x  .x.  y )  e.  I )  ->  A. x  e.  B  A. y  e.  I  A. z  e.  I  ( (
x  .x.  y )
( +g  `  R ) z )  e.  I
)
259, 7, 18, 8islidlm 14428 . . 3  |-  ( I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. y  e.  I  A. z  e.  I  (
( x  .x.  y
) ( +g  `  R
) z )  e.  I ) )
2614, 17, 24, 25syl3anbrc 1205 . 2  |-  ( ( ( R  e. Rng  /\  I  e.  (SubGrp `  R
) )  /\  A. x  e.  B  A. y  e.  I  (
x  .x.  y )  e.  I )  ->  I  e.  U )
2712, 26impbida 598 1  |-  ( ( R  e. Rng  /\  I  e.  (SubGrp `  R )
)  ->  ( I  e.  U  <->  A. x  e.  B  A. y  e.  I 
( x  .x.  y
)  e.  I ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395   E.wex 1538    e. wcel 2200   A.wral 2508    C_ wss 3197   ` cfv 5314  (class class class)co 5994   Basecbs 13018   +g cplusg 13096   .rcmulr 13097   0gc0g 13275  SubGrpcsubg 13690  Rngcrng 13881  LIdealclidl 14416
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4521  ax-setind 4626  ax-cnex 8078  ax-resscn 8079  ax-1cn 8080  ax-1re 8081  ax-icn 8082  ax-addcl 8083  ax-addrcl 8084  ax-mulcl 8085  ax-addcom 8087  ax-addass 8089  ax-i2m1 8092  ax-0lt1 8093  ax-0id 8095  ax-rnegex 8096  ax-pre-ltirr 8099  ax-pre-lttrn 8101  ax-pre-ltadd 8103
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4381  df-xp 4722  df-rel 4723  df-cnv 4724  df-co 4725  df-dm 4726  df-rn 4727  df-res 4728  df-ima 4729  df-iota 5274  df-fun 5316  df-fn 5317  df-f 5318  df-f1 5319  df-fo 5320  df-f1o 5321  df-fv 5322  df-riota 5947  df-ov 5997  df-oprab 5998  df-mpo 5999  df-pnf 8171  df-mnf 8172  df-ltxr 8174  df-inn 9099  df-2 9157  df-3 9158  df-4 9159  df-5 9160  df-6 9161  df-7 9162  df-8 9163  df-ndx 13021  df-slot 13022  df-base 13024  df-sets 13025  df-iress 13026  df-plusg 13109  df-mulr 13110  df-sca 13112  df-vsca 13113  df-ip 13114  df-0g 13277  df-mgm 13375  df-sgrp 13421  df-mnd 13436  df-grp 13522  df-subg 13693  df-abl 13810  df-mgp 13870  df-rng 13882  df-lssm 14302  df-sra 14384  df-rgmod 14385  df-lidl 14418
This theorem is referenced by:  isridlrng  14431  dflidl2  14437  df2idl2rng  14457
  Copyright terms: Public domain W3C validator