ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rnglidlmcl Unicode version

Theorem rnglidlmcl 14317
Description: A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven. (Contributed by AV, 18-Feb-2025.)
Hypotheses
Ref Expression
rnglidlmcl.z  |-  .0.  =  ( 0g `  R )
rnglidlmcl.b  |-  B  =  ( Base `  R
)
rnglidlmcl.t  |-  .x.  =  ( .r `  R )
rnglidlmcl.u  |-  U  =  (LIdeal `  R )
Assertion
Ref Expression
rnglidlmcl  |-  ( ( ( R  e. Rng  /\  I  e.  U  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I
) )  ->  ( X  .x.  Y )  e.  I )

Proof of Theorem rnglidlmcl
Dummy variables  x  a  b  j are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnglidlmcl.u . . . 4  |-  U  =  (LIdeal `  R )
2 rnglidlmcl.b . . . 4  |-  B  =  ( Base `  R
)
3 eqid 2206 . . . 4  |-  ( +g  `  R )  =  ( +g  `  R )
4 rnglidlmcl.t . . . 4  |-  .x.  =  ( .r `  R )
51, 2, 3, 4islidlm 14316 . . 3  |-  ( I  e.  U  <->  ( I  C_  B  /\  E. j 
j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
) ( +g  `  R
) b )  e.  I ) )
6 oveq1 5964 . . . . . . . . . . . . . . 15  |-  ( x  =  X  ->  (
x  .x.  a )  =  ( X  .x.  a ) )
76oveq1d 5972 . . . . . . . . . . . . . 14  |-  ( x  =  X  ->  (
( x  .x.  a
) ( +g  `  R
) b )  =  ( ( X  .x.  a ) ( +g  `  R ) b ) )
87eleq1d 2275 . . . . . . . . . . . . 13  |-  ( x  =  X  ->  (
( ( x  .x.  a ) ( +g  `  R ) b )  e.  I  <->  ( ( X  .x.  a ) ( +g  `  R ) b )  e.  I
) )
98ralbidv 2507 . . . . . . . . . . . 12  |-  ( x  =  X  ->  ( A. b  e.  I 
( ( x  .x.  a ) ( +g  `  R ) b )  e.  I  <->  A. b  e.  I  ( ( X  .x.  a ) ( +g  `  R ) b )  e.  I
) )
10 oveq2 5965 . . . . . . . . . . . . . . 15  |-  ( a  =  Y  ->  ( X  .x.  a )  =  ( X  .x.  Y
) )
1110oveq1d 5972 . . . . . . . . . . . . . 14  |-  ( a  =  Y  ->  (
( X  .x.  a
) ( +g  `  R
) b )  =  ( ( X  .x.  Y ) ( +g  `  R ) b ) )
1211eleq1d 2275 . . . . . . . . . . . . 13  |-  ( a  =  Y  ->  (
( ( X  .x.  a ) ( +g  `  R ) b )  e.  I  <->  ( ( X  .x.  Y ) ( +g  `  R ) b )  e.  I
) )
1312ralbidv 2507 . . . . . . . . . . . 12  |-  ( a  =  Y  ->  ( A. b  e.  I 
( ( X  .x.  a ) ( +g  `  R ) b )  e.  I  <->  A. b  e.  I  ( ( X  .x.  Y ) ( +g  `  R ) b )  e.  I
) )
149, 13rspc2v 2894 . . . . . . . . . . 11  |-  ( ( X  e.  B  /\  Y  e.  I )  ->  ( A. x  e.  B  A. a  e.  I  A. b  e.  I  ( ( x 
.x.  a ) ( +g  `  R ) b )  e.  I  ->  A. b  e.  I 
( ( X  .x.  Y ) ( +g  `  R ) b )  e.  I ) )
1514adantl 277 . . . . . . . . . 10  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  ( A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
) ( +g  `  R
) b )  e.  I  ->  A. b  e.  I  ( ( X  .x.  Y ) ( +g  `  R ) b )  e.  I
) )
16 oveq2 5965 . . . . . . . . . . . . . . 15  |-  ( b  =  .0.  ->  (
( X  .x.  Y
) ( +g  `  R
) b )  =  ( ( X  .x.  Y ) ( +g  `  R )  .0.  )
)
1716eleq1d 2275 . . . . . . . . . . . . . 14  |-  ( b  =  .0.  ->  (
( ( X  .x.  Y ) ( +g  `  R ) b )  e.  I  <->  ( ( X  .x.  Y ) ( +g  `  R )  .0.  )  e.  I
) )
1817rspcv 2877 . . . . . . . . . . . . 13  |-  (  .0. 
e.  I  ->  ( A. b  e.  I 
( ( X  .x.  Y ) ( +g  `  R ) b )  e.  I  ->  (
( X  .x.  Y
) ( +g  `  R
)  .0.  )  e.  I ) )
1918adantl 277 . . . . . . . . . . . 12  |-  ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  ->  ( A. b  e.  I 
( ( X  .x.  Y ) ( +g  `  R ) b )  e.  I  ->  (
( X  .x.  Y
) ( +g  `  R
)  .0.  )  e.  I ) )
20 rnglidlmcl.z . . . . . . . . . . . . . . . 16  |-  .0.  =  ( 0g `  R )
21 rnggrp 13775 . . . . . . . . . . . . . . . . . 18  |-  ( R  e. Rng  ->  R  e.  Grp )
22213ad2ant1 1021 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e. Rng  /\  I  C_  B  /\  E. j 
j  e.  I )  ->  R  e.  Grp )
2322ad2antrr 488 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  R  e.  Grp )
24 simpll1 1039 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  R  e. Rng )
25 simprl 529 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  X  e.  B )
26 simpll2 1040 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  I  C_  B
)
27 simprr 531 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  Y  e.  I )
2826, 27sseldd 3198 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  Y  e.  B )
292, 4rngcl 13781 . . . . . . . . . . . . . . . . 17  |-  ( ( R  e. Rng  /\  X  e.  B  /\  Y  e.  B )  ->  ( X  .x.  Y )  e.  B )
3024, 25, 28, 29syl3anc 1250 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  ( X  .x.  Y )  e.  B
)
312, 3, 20, 23, 30grpridd 13441 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  ( ( X  .x.  Y ) ( +g  `  R )  .0.  )  =  ( X  .x.  Y ) )
3231eleq1d 2275 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  ( (
( X  .x.  Y
) ( +g  `  R
)  .0.  )  e.  I  <->  ( X  .x.  Y )  e.  I
) )
3332biimpd 144 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  ( (
( X  .x.  Y
) ( +g  `  R
)  .0.  )  e.  I  ->  ( X  .x.  Y )  e.  I
) )
3433ex 115 . . . . . . . . . . . 12  |-  ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  ->  (
( X  e.  B  /\  Y  e.  I
)  ->  ( (
( X  .x.  Y
) ( +g  `  R
)  .0.  )  e.  I  ->  ( X  .x.  Y )  e.  I
) ) )
3519, 34syl5d 68 . . . . . . . . . . 11  |-  ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  ->  (
( X  e.  B  /\  Y  e.  I
)  ->  ( A. b  e.  I  (
( X  .x.  Y
) ( +g  `  R
) b )  e.  I  ->  ( X  .x.  Y )  e.  I
) ) )
3635imp 124 . . . . . . . . . 10  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  ( A. b  e.  I  (
( X  .x.  Y
) ( +g  `  R
) b )  e.  I  ->  ( X  .x.  Y )  e.  I
) )
3715, 36syld 45 . . . . . . . . 9  |-  ( ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I )
)  ->  ( A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
) ( +g  `  R
) b )  e.  I  ->  ( X  .x.  Y )  e.  I
) )
3837ex 115 . . . . . . . 8  |-  ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  ->  (
( X  e.  B  /\  Y  e.  I
)  ->  ( A. x  e.  B  A. a  e.  I  A. b  e.  I  (
( x  .x.  a
) ( +g  `  R
) b )  e.  I  ->  ( X  .x.  Y )  e.  I
) ) )
3938com23 78 . . . . . . 7  |-  ( ( ( R  e. Rng  /\  I  C_  B  /\  E. j  j  e.  I
)  /\  .0.  e.  I )  ->  ( A. x  e.  B  A. a  e.  I  A. b  e.  I 
( ( x  .x.  a ) ( +g  `  R ) b )  e.  I  ->  (
( X  e.  B  /\  Y  e.  I
)  ->  ( X  .x.  Y )  e.  I
) ) )
4039ex 115 . . . . . 6  |-  ( ( R  e. Rng  /\  I  C_  B  /\  E. j 
j  e.  I )  ->  (  .0.  e.  I  ->  ( A. x  e.  B  A. a  e.  I  A. b  e.  I  ( (
x  .x.  a )
( +g  `  R ) b )  e.  I  ->  ( ( X  e.  B  /\  Y  e.  I )  ->  ( X  .x.  Y )  e.  I ) ) ) )
4140com23 78 . . . . 5  |-  ( ( R  e. Rng  /\  I  C_  B  /\  E. j 
j  e.  I )  ->  ( A. x  e.  B  A. a  e.  I  A. b  e.  I  ( (
x  .x.  a )
( +g  `  R ) b )  e.  I  ->  (  .0.  e.  I  ->  ( ( X  e.  B  /\  Y  e.  I )  ->  ( X  .x.  Y )  e.  I ) ) ) )
42413exp 1205 . . . 4  |-  ( R  e. Rng  ->  ( I  C_  B  ->  ( E. j 
j  e.  I  -> 
( A. x  e.  B  A. a  e.  I  A. b  e.  I  ( ( x 
.x.  a ) ( +g  `  R ) b )  e.  I  ->  (  .0.  e.  I  ->  ( ( X  e.  B  /\  Y  e.  I )  ->  ( X  .x.  Y )  e.  I ) ) ) ) ) )
43423impd 1224 . . 3  |-  ( R  e. Rng  ->  ( ( I 
C_  B  /\  E. j  j  e.  I  /\  A. x  e.  B  A. a  e.  I  A. b  e.  I 
( ( x  .x.  a ) ( +g  `  R ) b )  e.  I )  -> 
(  .0.  e.  I  ->  ( ( X  e.  B  /\  Y  e.  I )  ->  ( X  .x.  Y )  e.  I ) ) ) )
445, 43biimtrid 152 . 2  |-  ( R  e. Rng  ->  ( I  e.  U  ->  (  .0.  e.  I  ->  ( ( X  e.  B  /\  Y  e.  I )  ->  ( X  .x.  Y
)  e.  I ) ) ) )
45443imp1 1223 1  |-  ( ( ( R  e. Rng  /\  I  e.  U  /\  .0.  e.  I )  /\  ( X  e.  B  /\  Y  e.  I
) )  ->  ( X  .x.  Y )  e.  I )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373   E.wex 1516    e. wcel 2177   A.wral 2485    C_ wss 3170   ` cfv 5280  (class class class)co 5957   Basecbs 12907   +g cplusg 12984   .rcmulr 12985   0gc0g 13163   Grpcgrp 13407  Rngcrng 13769  LIdealclidl 14304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-riota 5912  df-ov 5960  df-oprab 5961  df-mpo 5962  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-plusg 12997  df-mulr 12998  df-sca 13000  df-vsca 13001  df-ip 13002  df-0g 13165  df-mgm 13263  df-sgrp 13309  df-mnd 13324  df-grp 13410  df-abl 13698  df-mgp 13758  df-rng 13770  df-lssm 14190  df-sra 14272  df-rgmod 14273  df-lidl 14306
This theorem is referenced by:  dflidl2rng  14318  rnglidlmmgm  14333  2idlcpblrng  14360
  Copyright terms: Public domain W3C validator