| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rnglidlmcl | Unicode version | ||
| Description: A (left) ideal containing the zero element is closed under left-multiplication by elements of the full non-unital ring. If the ring is not a unital ring, and the ideal does not contain the zero element of the ring, then the closure cannot be proven. (Contributed by AV, 18-Feb-2025.) |
| Ref | Expression |
|---|---|
| rnglidlmcl.z |
|
| rnglidlmcl.b |
|
| rnglidlmcl.t |
|
| rnglidlmcl.u |
|
| Ref | Expression |
|---|---|
| rnglidlmcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rnglidlmcl.u |
. . . 4
| |
| 2 | rnglidlmcl.b |
. . . 4
| |
| 3 | eqid 2206 |
. . . 4
| |
| 4 | rnglidlmcl.t |
. . . 4
| |
| 5 | 1, 2, 3, 4 | islidlm 14316 |
. . 3
|
| 6 | oveq1 5964 |
. . . . . . . . . . . . . . 15
| |
| 7 | 6 | oveq1d 5972 |
. . . . . . . . . . . . . 14
|
| 8 | 7 | eleq1d 2275 |
. . . . . . . . . . . . 13
|
| 9 | 8 | ralbidv 2507 |
. . . . . . . . . . . 12
|
| 10 | oveq2 5965 |
. . . . . . . . . . . . . . 15
| |
| 11 | 10 | oveq1d 5972 |
. . . . . . . . . . . . . 14
|
| 12 | 11 | eleq1d 2275 |
. . . . . . . . . . . . 13
|
| 13 | 12 | ralbidv 2507 |
. . . . . . . . . . . 12
|
| 14 | 9, 13 | rspc2v 2894 |
. . . . . . . . . . 11
|
| 15 | 14 | adantl 277 |
. . . . . . . . . 10
|
| 16 | oveq2 5965 |
. . . . . . . . . . . . . . 15
| |
| 17 | 16 | eleq1d 2275 |
. . . . . . . . . . . . . 14
|
| 18 | 17 | rspcv 2877 |
. . . . . . . . . . . . 13
|
| 19 | 18 | adantl 277 |
. . . . . . . . . . . 12
|
| 20 | rnglidlmcl.z |
. . . . . . . . . . . . . . . 16
| |
| 21 | rnggrp 13775 |
. . . . . . . . . . . . . . . . . 18
| |
| 22 | 21 | 3ad2ant1 1021 |
. . . . . . . . . . . . . . . . 17
|
| 23 | 22 | ad2antrr 488 |
. . . . . . . . . . . . . . . 16
|
| 24 | simpll1 1039 |
. . . . . . . . . . . . . . . . 17
| |
| 25 | simprl 529 |
. . . . . . . . . . . . . . . . 17
| |
| 26 | simpll2 1040 |
. . . . . . . . . . . . . . . . . 18
| |
| 27 | simprr 531 |
. . . . . . . . . . . . . . . . . 18
| |
| 28 | 26, 27 | sseldd 3198 |
. . . . . . . . . . . . . . . . 17
|
| 29 | 2, 4 | rngcl 13781 |
. . . . . . . . . . . . . . . . 17
|
| 30 | 24, 25, 28, 29 | syl3anc 1250 |
. . . . . . . . . . . . . . . 16
|
| 31 | 2, 3, 20, 23, 30 | grpridd 13441 |
. . . . . . . . . . . . . . 15
|
| 32 | 31 | eleq1d 2275 |
. . . . . . . . . . . . . 14
|
| 33 | 32 | biimpd 144 |
. . . . . . . . . . . . 13
|
| 34 | 33 | ex 115 |
. . . . . . . . . . . 12
|
| 35 | 19, 34 | syl5d 68 |
. . . . . . . . . . 11
|
| 36 | 35 | imp 124 |
. . . . . . . . . 10
|
| 37 | 15, 36 | syld 45 |
. . . . . . . . 9
|
| 38 | 37 | ex 115 |
. . . . . . . 8
|
| 39 | 38 | com23 78 |
. . . . . . 7
|
| 40 | 39 | ex 115 |
. . . . . 6
|
| 41 | 40 | com23 78 |
. . . . 5
|
| 42 | 41 | 3exp 1205 |
. . . 4
|
| 43 | 42 | 3impd 1224 |
. . 3
|
| 44 | 5, 43 | biimtrid 152 |
. 2
|
| 45 | 44 | 3imp1 1223 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-5 9118 df-6 9119 df-7 9120 df-8 9121 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-sca 13000 df-vsca 13001 df-ip 13002 df-0g 13165 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-abl 13698 df-mgp 13758 df-rng 13770 df-lssm 14190 df-sra 14272 df-rgmod 14273 df-lidl 14306 |
| This theorem is referenced by: dflidl2rng 14318 rnglidlmmgm 14333 2idlcpblrng 14360 |
| Copyright terms: Public domain | W3C validator |