ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflidl2rng GIF version

Theorem dflidl2rng 14115
Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
dflidl2rng.u 𝑈 = (LIdeal‘𝑅)
dflidl2rng.b 𝐵 = (Base‘𝑅)
dflidl2rng.t · = (.r𝑅)
Assertion
Ref Expression
dflidl2rng ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem dflidl2rng
Dummy variables 𝑧 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → 𝑅 ∈ Rng)
2 simpr 110 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → 𝐼𝑈)
3 eqid 2196 . . . . . . 7 (0g𝑅) = (0g𝑅)
43subg0cl 13390 . . . . . 6 (𝐼 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝐼)
54ad2antlr 489 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
61, 2, 53jca 1179 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → (𝑅 ∈ Rng ∧ 𝐼𝑈 ∧ (0g𝑅) ∈ 𝐼))
7 dflidl2rng.b . . . . 5 𝐵 = (Base‘𝑅)
8 dflidl2rng.t . . . . 5 · = (.r𝑅)
9 dflidl2rng.u . . . . 5 𝑈 = (LIdeal‘𝑅)
103, 7, 8, 9rnglidlmcl 14114 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼𝑈 ∧ (0g𝑅) ∈ 𝐼) ∧ (𝑥𝐵𝑦𝐼)) → (𝑥 · 𝑦) ∈ 𝐼)
116, 10sylan 283 . . 3 ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) ∧ (𝑥𝐵𝑦𝐼)) → (𝑥 · 𝑦) ∈ 𝐼)
1211ralrimivva 2579 . 2 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼)
137subgss 13382 . . . 4 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
1413ad2antlr 489 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼𝐵)
15 elex2 2779 . . . . 5 ((0g𝑅) ∈ 𝐼 → ∃𝑗 𝑗𝐼)
164, 15syl 14 . . . 4 (𝐼 ∈ (SubGrp‘𝑅) → ∃𝑗 𝑗𝐼)
1716ad2antlr 489 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∃𝑗 𝑗𝐼)
18 eqid 2196 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
1918subgcl 13392 . . . . . . . 8 ((𝐼 ∈ (SubGrp‘𝑅) ∧ (𝑥 · 𝑦) ∈ 𝐼𝑧𝐼) → ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
2019ad5ant245 1238 . . . . . . 7 (((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥𝐵𝑦𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) ∧ 𝑧𝐼) → ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
2120ralrimiva 2570 . . . . . 6 ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥𝐵𝑦𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
2221ex 115 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥𝐵𝑦𝐼)) → ((𝑥 · 𝑦) ∈ 𝐼 → ∀𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼))
2322ralimdvva 2566 . . . 4 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼 → ∀𝑥𝐵𝑦𝐼𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼))
2423imp 124 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑥𝐵𝑦𝐼𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
259, 7, 18, 8islidlm 14113 . . 3 (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑦𝐼𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼))
2614, 17, 24, 25syl3anbrc 1183 . 2 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼𝑈)
2712, 26impbida 596 1 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980   = wceq 1364  wex 1506  wcel 2167  wral 2475  wss 3157  cfv 5259  (class class class)co 5925  Basecbs 12705  +gcplusg 12782  .rcmulr 12783  0gc0g 12960  SubGrpcsubg 13375  Rngcrng 13566  LIdealclidl 14101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7989  ax-resscn 7990  ax-1cn 7991  ax-1re 7992  ax-icn 7993  ax-addcl 7994  ax-addrcl 7995  ax-mulcl 7996  ax-addcom 7998  ax-addass 8000  ax-i2m1 8003  ax-0lt1 8004  ax-0id 8006  ax-rnegex 8007  ax-pre-ltirr 8010  ax-pre-lttrn 8012  ax-pre-ltadd 8014
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8082  df-mnf 8083  df-ltxr 8085  df-inn 9010  df-2 9068  df-3 9069  df-4 9070  df-5 9071  df-6 9072  df-7 9073  df-8 9074  df-ndx 12708  df-slot 12709  df-base 12711  df-sets 12712  df-iress 12713  df-plusg 12795  df-mulr 12796  df-sca 12798  df-vsca 12799  df-ip 12800  df-0g 12962  df-mgm 13060  df-sgrp 13106  df-mnd 13121  df-grp 13207  df-subg 13378  df-abl 13495  df-mgp 13555  df-rng 13567  df-lssm 13987  df-sra 14069  df-rgmod 14070  df-lidl 14103
This theorem is referenced by:  isridlrng  14116  dflidl2  14122  df2idl2rng  14142
  Copyright terms: Public domain W3C validator