ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dflidl2rng GIF version

Theorem dflidl2rng 14453
Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.)
Hypotheses
Ref Expression
dflidl2rng.u 𝑈 = (LIdeal‘𝑅)
dflidl2rng.b 𝐵 = (Base‘𝑅)
dflidl2rng.t · = (.r𝑅)
Assertion
Ref Expression
dflidl2rng ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   · (𝑥,𝑦)

Proof of Theorem dflidl2rng
Dummy variables 𝑧 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 527 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → 𝑅 ∈ Rng)
2 simpr 110 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → 𝐼𝑈)
3 eqid 2229 . . . . . . 7 (0g𝑅) = (0g𝑅)
43subg0cl 13727 . . . . . 6 (𝐼 ∈ (SubGrp‘𝑅) → (0g𝑅) ∈ 𝐼)
54ad2antlr 489 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → (0g𝑅) ∈ 𝐼)
61, 2, 53jca 1201 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → (𝑅 ∈ Rng ∧ 𝐼𝑈 ∧ (0g𝑅) ∈ 𝐼))
7 dflidl2rng.b . . . . 5 𝐵 = (Base‘𝑅)
8 dflidl2rng.t . . . . 5 · = (.r𝑅)
9 dflidl2rng.u . . . . 5 𝑈 = (LIdeal‘𝑅)
103, 7, 8, 9rnglidlmcl 14452 . . . 4 (((𝑅 ∈ Rng ∧ 𝐼𝑈 ∧ (0g𝑅) ∈ 𝐼) ∧ (𝑥𝐵𝑦𝐼)) → (𝑥 · 𝑦) ∈ 𝐼)
116, 10sylan 283 . . 3 ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) ∧ (𝑥𝐵𝑦𝐼)) → (𝑥 · 𝑦) ∈ 𝐼)
1211ralrimivva 2612 . 2 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼𝑈) → ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼)
137subgss 13719 . . . 4 (𝐼 ∈ (SubGrp‘𝑅) → 𝐼𝐵)
1413ad2antlr 489 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼𝐵)
15 elex2 2816 . . . . 5 ((0g𝑅) ∈ 𝐼 → ∃𝑗 𝑗𝐼)
164, 15syl 14 . . . 4 (𝐼 ∈ (SubGrp‘𝑅) → ∃𝑗 𝑗𝐼)
1716ad2antlr 489 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∃𝑗 𝑗𝐼)
18 eqid 2229 . . . . . . . . 9 (+g𝑅) = (+g𝑅)
1918subgcl 13729 . . . . . . . 8 ((𝐼 ∈ (SubGrp‘𝑅) ∧ (𝑥 · 𝑦) ∈ 𝐼𝑧𝐼) → ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
2019ad5ant245 1260 . . . . . . 7 (((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥𝐵𝑦𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) ∧ 𝑧𝐼) → ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
2120ralrimiva 2603 . . . . . 6 ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥𝐵𝑦𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
2221ex 115 . . . . 5 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥𝐵𝑦𝐼)) → ((𝑥 · 𝑦) ∈ 𝐼 → ∀𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼))
2322ralimdvva 2599 . . . 4 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼 → ∀𝑥𝐵𝑦𝐼𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼))
2423imp 124 . . 3 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑥𝐵𝑦𝐼𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼)
259, 7, 18, 8islidlm 14451 . . 3 (𝐼𝑈 ↔ (𝐼𝐵 ∧ ∃𝑗 𝑗𝐼 ∧ ∀𝑥𝐵𝑦𝐼𝑧𝐼 ((𝑥 · 𝑦)(+g𝑅)𝑧) ∈ 𝐼))
2614, 17, 24, 25syl3anbrc 1205 . 2 (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼𝑈)
2712, 26impbida 598 1 ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼𝑈 ↔ ∀𝑥𝐵𝑦𝐼 (𝑥 · 𝑦) ∈ 𝐼))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wex 1538  wcel 2200  wral 2508  wss 3197  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  0gc0g 13297  SubGrpcsubg 13712  Rngcrng 13903  LIdealclidl 14439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-4 9179  df-5 9180  df-6 9181  df-7 9182  df-8 9183  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-sca 13134  df-vsca 13135  df-ip 13136  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-subg 13715  df-abl 13832  df-mgp 13892  df-rng 13904  df-lssm 14325  df-sra 14407  df-rgmod 14408  df-lidl 14441
This theorem is referenced by:  isridlrng  14454  dflidl2  14460  df2idl2rng  14480
  Copyright terms: Public domain W3C validator