![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dflidl2rng | GIF version |
Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
Ref | Expression |
---|---|
dflidl2rng.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
dflidl2rng.b | ⊢ 𝐵 = (Base‘𝑅) |
dflidl2rng.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dflidl2rng | ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → 𝑅 ∈ Rng) | |
2 | simpr 110 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
3 | eqid 2193 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 3 | subg0cl 13252 | . . . . . 6 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (0g‘𝑅) ∈ 𝐼) |
5 | 4 | ad2antlr 489 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → (0g‘𝑅) ∈ 𝐼) |
6 | 1, 2, 5 | 3jca 1179 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → (𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ (0g‘𝑅) ∈ 𝐼)) |
7 | dflidl2rng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
8 | dflidl2rng.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
9 | dflidl2rng.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
10 | 3, 7, 8, 9 | rnglidlmcl 13976 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ (0g‘𝑅) ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → (𝑥 · 𝑦) ∈ 𝐼) |
11 | 6, 10 | sylan 283 | . . 3 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → (𝑥 · 𝑦) ∈ 𝐼) |
12 | 11 | ralrimivva 2576 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) |
13 | 7 | subgss 13244 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ⊆ 𝐵) |
14 | 13 | ad2antlr 489 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ⊆ 𝐵) |
15 | elex2 2776 | . . . . 5 ⊢ ((0g‘𝑅) ∈ 𝐼 → ∃𝑗 𝑗 ∈ 𝐼) | |
16 | 4, 15 | syl 14 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → ∃𝑗 𝑗 ∈ 𝐼) |
17 | 16 | ad2antlr 489 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∃𝑗 𝑗 ∈ 𝐼) |
18 | eqid 2193 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
19 | 18 | subgcl 13254 | . . . . . . . 8 ⊢ ((𝐼 ∈ (SubGrp‘𝑅) ∧ (𝑥 · 𝑦) ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
20 | 19 | ad5ant245 1238 | . . . . . . 7 ⊢ (((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) → ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
21 | 20 | ralrimiva 2567 | . . . . . 6 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
22 | 21 | ex 115 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → ((𝑥 · 𝑦) ∈ 𝐼 → ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
23 | 22 | ralimdvva 2563 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
24 | 23 | imp 124 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
25 | 9, 7, 18, 8 | islidlm 13975 | . . 3 ⊢ (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
26 | 14, 17, 24, 25 | syl3anbrc 1183 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ∈ 𝑈) |
27 | 12, 26 | impbida 596 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2164 ∀wral 2472 ⊆ wss 3153 ‘cfv 5254 (class class class)co 5918 Basecbs 12618 +gcplusg 12695 .rcmulr 12696 0gc0g 12867 SubGrpcsubg 13237 Rngcrng 13428 LIdealclidl 13963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-addcom 7972 ax-addass 7974 ax-i2m1 7977 ax-0lt1 7978 ax-0id 7980 ax-rnegex 7981 ax-pre-ltirr 7984 ax-pre-lttrn 7986 ax-pre-ltadd 7988 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-pnf 8056 df-mnf 8057 df-ltxr 8059 df-inn 8983 df-2 9041 df-3 9042 df-4 9043 df-5 9044 df-6 9045 df-7 9046 df-8 9047 df-ndx 12621 df-slot 12622 df-base 12624 df-sets 12625 df-iress 12626 df-plusg 12708 df-mulr 12709 df-sca 12711 df-vsca 12712 df-ip 12713 df-0g 12869 df-mgm 12939 df-sgrp 12985 df-mnd 12998 df-grp 13075 df-subg 13240 df-abl 13357 df-mgp 13417 df-rng 13429 df-lssm 13849 df-sra 13931 df-rgmod 13932 df-lidl 13965 |
This theorem is referenced by: isridlrng 13978 dflidl2 13984 df2idl2rng 14004 |
Copyright terms: Public domain | W3C validator |