![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dflidl2rng | GIF version |
Description: Alternate (the usual textbook) definition of a (left) ideal of a non-unital ring to be a subgroup of the additive group of the ring which is closed under left-multiplication by elements of the full ring. (Contributed by AV, 21-Mar-2025.) |
Ref | Expression |
---|---|
dflidl2rng.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
dflidl2rng.b | ⊢ 𝐵 = (Base‘𝑅) |
dflidl2rng.t | ⊢ · = (.r‘𝑅) |
Ref | Expression |
---|---|
dflidl2rng | ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpll 527 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → 𝑅 ∈ Rng) | |
2 | simpr 110 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → 𝐼 ∈ 𝑈) | |
3 | eqid 2189 | . . . . . . 7 ⊢ (0g‘𝑅) = (0g‘𝑅) | |
4 | 3 | subg0cl 13118 | . . . . . 6 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → (0g‘𝑅) ∈ 𝐼) |
5 | 4 | ad2antlr 489 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → (0g‘𝑅) ∈ 𝐼) |
6 | 1, 2, 5 | 3jca 1179 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → (𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ (0g‘𝑅) ∈ 𝐼)) |
7 | dflidl2rng.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
8 | dflidl2rng.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
9 | dflidl2rng.u | . . . . 5 ⊢ 𝑈 = (LIdeal‘𝑅) | |
10 | 3, 7, 8, 9 | rnglidlmcl 13793 | . . . 4 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ 𝑈 ∧ (0g‘𝑅) ∈ 𝐼) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → (𝑥 · 𝑦) ∈ 𝐼) |
11 | 6, 10 | sylan 283 | . . 3 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → (𝑥 · 𝑦) ∈ 𝐼) |
12 | 11 | ralrimivva 2572 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ 𝐼 ∈ 𝑈) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) |
13 | 7 | subgss 13110 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → 𝐼 ⊆ 𝐵) |
14 | 13 | ad2antlr 489 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ⊆ 𝐵) |
15 | elex2 2768 | . . . . 5 ⊢ ((0g‘𝑅) ∈ 𝐼 → ∃𝑗 𝑗 ∈ 𝐼) | |
16 | 4, 15 | syl 14 | . . . 4 ⊢ (𝐼 ∈ (SubGrp‘𝑅) → ∃𝑗 𝑗 ∈ 𝐼) |
17 | 16 | ad2antlr 489 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∃𝑗 𝑗 ∈ 𝐼) |
18 | eqid 2189 | . . . . . . . . 9 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
19 | 18 | subgcl 13120 | . . . . . . . 8 ⊢ ((𝐼 ∈ (SubGrp‘𝑅) ∧ (𝑥 · 𝑦) ∈ 𝐼 ∧ 𝑧 ∈ 𝐼) → ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
20 | 19 | ad5ant245 1238 | . . . . . . 7 ⊢ (((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) ∧ 𝑧 ∈ 𝐼) → ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
21 | 20 | ralrimiva 2563 | . . . . . 6 ⊢ ((((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) ∧ (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
22 | 21 | ex 115 | . . . . 5 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐼)) → ((𝑥 · 𝑦) ∈ 𝐼 → ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
23 | 22 | ralimdvva 2559 | . . . 4 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼 → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
24 | 23 | imp 124 | . . 3 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼) |
25 | 9, 7, 18, 8 | islidlm 13792 | . . 3 ⊢ (𝐼 ∈ 𝑈 ↔ (𝐼 ⊆ 𝐵 ∧ ∃𝑗 𝑗 ∈ 𝐼 ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 ∀𝑧 ∈ 𝐼 ((𝑥 · 𝑦)(+g‘𝑅)𝑧) ∈ 𝐼)) |
26 | 14, 17, 24, 25 | syl3anbrc 1183 | . 2 ⊢ (((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) ∧ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼) → 𝐼 ∈ 𝑈) |
27 | 12, 26 | impbida 596 | 1 ⊢ ((𝑅 ∈ Rng ∧ 𝐼 ∈ (SubGrp‘𝑅)) → (𝐼 ∈ 𝑈 ↔ ∀𝑥 ∈ 𝐵 ∀𝑦 ∈ 𝐼 (𝑥 · 𝑦) ∈ 𝐼)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 980 = wceq 1364 ∃wex 1503 ∈ wcel 2160 ∀wral 2468 ⊆ wss 3144 ‘cfv 5235 (class class class)co 5895 Basecbs 12511 +gcplusg 12586 .rcmulr 12587 0gc0g 12758 SubGrpcsubg 13103 Rngcrng 13283 LIdealclidl 13780 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4133 ax-sep 4136 ax-pow 4192 ax-pr 4227 ax-un 4451 ax-setind 4554 ax-cnex 7931 ax-resscn 7932 ax-1cn 7933 ax-1re 7934 ax-icn 7935 ax-addcl 7936 ax-addrcl 7937 ax-mulcl 7938 ax-addcom 7940 ax-addass 7942 ax-i2m1 7945 ax-0lt1 7946 ax-0id 7948 ax-rnegex 7949 ax-pre-ltirr 7952 ax-pre-lttrn 7954 ax-pre-ltadd 7956 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-iun 3903 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4311 df-xp 4650 df-rel 4651 df-cnv 4652 df-co 4653 df-dm 4654 df-rn 4655 df-res 4656 df-ima 4657 df-iota 5196 df-fun 5237 df-fn 5238 df-f 5239 df-f1 5240 df-fo 5241 df-f1o 5242 df-fv 5243 df-riota 5851 df-ov 5898 df-oprab 5899 df-mpo 5900 df-pnf 8023 df-mnf 8024 df-ltxr 8026 df-inn 8949 df-2 9007 df-3 9008 df-4 9009 df-5 9010 df-6 9011 df-7 9012 df-8 9013 df-ndx 12514 df-slot 12515 df-base 12517 df-sets 12518 df-iress 12519 df-plusg 12599 df-mulr 12600 df-sca 12602 df-vsca 12603 df-ip 12604 df-0g 12760 df-mgm 12829 df-sgrp 12862 df-mnd 12875 df-grp 12945 df-subg 13106 df-abl 13223 df-mgp 13272 df-rng 13284 df-lssm 13666 df-sra 13748 df-rgmod 13749 df-lidl 13782 |
This theorem is referenced by: isridlrng 13795 dflidl2 13801 df2idl2rng 13820 |
Copyright terms: Public domain | W3C validator |