| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsflip | GIF version | ||
| Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.) |
| Ref | Expression |
|---|---|
| dvdsflip.a | ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
| dvdsflip.f | ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) |
| Ref | Expression |
|---|---|
| dvdsflip | ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsflip.f | . 2 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) | |
| 2 | dvdsflip.a | . . . . 5 ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} | |
| 3 | 2 | eleq2i 2276 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 4 | dvdsdivcl 12327 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
| 5 | 3, 4 | sylan2b 287 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 6 | 5, 2 | eleqtrrdi 2303 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴) → (𝑁 / 𝑦) ∈ 𝐴) |
| 7 | 2 | eleq2i 2276 | . . . 4 ⊢ (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 8 | dvdsdivcl 12327 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
| 9 | 7, 8 | sylan2b 287 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 10 | 9, 2 | eleqtrrdi 2303 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴) → (𝑁 / 𝑧) ∈ 𝐴) |
| 11 | ssrab2 3289 | . . . . . . 7 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ | |
| 12 | 2, 11 | eqsstri 3236 | . . . . . 6 ⊢ 𝐴 ⊆ ℕ |
| 13 | 12 | sseli 3200 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℕ) |
| 14 | 12 | sseli 3200 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ ℕ) |
| 15 | 13, 14 | anim12i 338 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) |
| 16 | nncn 9086 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 17 | 16 | adantr 276 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑁 ∈ ℂ) |
| 18 | nncn 9086 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 19 | 18 | ad2antrl 490 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℂ) |
| 20 | nncn 9086 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
| 21 | 20 | ad2antll 491 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℂ) |
| 22 | simprr 531 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℕ) | |
| 23 | 22 | nnap0d 9124 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 # 0) |
| 24 | 17, 19, 21, 23 | divmulap3d 8940 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ 𝑁 = (𝑦 · 𝑧))) |
| 25 | simprl 529 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℕ) | |
| 26 | 25 | nnap0d 9124 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 # 0) |
| 27 | 17, 21, 19, 26 | divmulap2d 8939 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑦) = 𝑧 ↔ 𝑁 = (𝑦 · 𝑧))) |
| 28 | 24, 27 | bitr4d 191 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧)) |
| 29 | 15, 28 | sylan2 286 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧)) |
| 30 | eqcom 2211 | . . 3 ⊢ (𝑦 = (𝑁 / 𝑧) ↔ (𝑁 / 𝑧) = 𝑦) | |
| 31 | eqcom 2211 | . . 3 ⊢ (𝑧 = (𝑁 / 𝑦) ↔ (𝑁 / 𝑦) = 𝑧) | |
| 32 | 29, 30, 31 | 3bitr4g 223 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦 = (𝑁 / 𝑧) ↔ 𝑧 = (𝑁 / 𝑦))) |
| 33 | 1, 6, 10, 32 | f1o2d 6181 | 1 ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 {crab 2492 class class class wbr 4062 ↦ cmpt 4124 –1-1-onto→wf1o 5293 (class class class)co 5974 ℂcc 7965 · cmul 7972 / cdiv 8787 ℕcn 9078 ∥ cdvds 12264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-f1 5299 df-fo 5300 df-f1o 5301 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-n0 9338 df-z 9415 df-dvds 12265 |
| This theorem is referenced by: phisum 12729 |
| Copyright terms: Public domain | W3C validator |