ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsflip GIF version

Theorem dvdsflip 12370
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.)
Hypotheses
Ref Expression
dvdsflip.a 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
dvdsflip.f 𝐹 = (𝑦𝐴 ↦ (𝑁 / 𝑦))
Assertion
Ref Expression
dvdsflip (𝑁 ∈ ℕ → 𝐹:𝐴1-1-onto𝐴)
Distinct variable groups:   𝑦,𝐴   𝑥,𝑦,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥,𝑦)

Proof of Theorem dvdsflip
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvdsflip.f . 2 𝐹 = (𝑦𝐴 ↦ (𝑁 / 𝑦))
2 dvdsflip.a . . . . 5 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥𝑁}
32eleq2i 2296 . . . 4 (𝑦𝐴𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
4 dvdsdivcl 12369 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
53, 4sylan2b 287 . . 3 ((𝑁 ∈ ℕ ∧ 𝑦𝐴) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
65, 2eleqtrrdi 2323 . 2 ((𝑁 ∈ ℕ ∧ 𝑦𝐴) → (𝑁 / 𝑦) ∈ 𝐴)
72eleq2i 2296 . . . 4 (𝑧𝐴𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
8 dvdsdivcl 12369 . . . 4 ((𝑁 ∈ ℕ ∧ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁}) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
97, 8sylan2b 287 . . 3 ((𝑁 ∈ ℕ ∧ 𝑧𝐴) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥𝑁})
109, 2eleqtrrdi 2323 . 2 ((𝑁 ∈ ℕ ∧ 𝑧𝐴) → (𝑁 / 𝑧) ∈ 𝐴)
11 ssrab2 3309 . . . . . . 7 {𝑥 ∈ ℕ ∣ 𝑥𝑁} ⊆ ℕ
122, 11eqsstri 3256 . . . . . 6 𝐴 ⊆ ℕ
1312sseli 3220 . . . . 5 (𝑦𝐴𝑦 ∈ ℕ)
1412sseli 3220 . . . . 5 (𝑧𝐴𝑧 ∈ ℕ)
1513, 14anim12i 338 . . . 4 ((𝑦𝐴𝑧𝐴) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ))
16 nncn 9126 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1716adantr 276 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑁 ∈ ℂ)
18 nncn 9126 . . . . . . 7 (𝑦 ∈ ℕ → 𝑦 ∈ ℂ)
1918ad2antrl 490 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℂ)
20 nncn 9126 . . . . . . 7 (𝑧 ∈ ℕ → 𝑧 ∈ ℂ)
2120ad2antll 491 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℂ)
22 simprr 531 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℕ)
2322nnap0d 9164 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 # 0)
2417, 19, 21, 23divmulap3d 8980 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦𝑁 = (𝑦 · 𝑧)))
25 simprl 529 . . . . . . 7 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℕ)
2625nnap0d 9164 . . . . . 6 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 # 0)
2717, 21, 19, 26divmulap2d 8979 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑦) = 𝑧𝑁 = (𝑦 · 𝑧)))
2824, 27bitr4d 191 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧))
2915, 28sylan2 286 . . 3 ((𝑁 ∈ ℕ ∧ (𝑦𝐴𝑧𝐴)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧))
30 eqcom 2231 . . 3 (𝑦 = (𝑁 / 𝑧) ↔ (𝑁 / 𝑧) = 𝑦)
31 eqcom 2231 . . 3 (𝑧 = (𝑁 / 𝑦) ↔ (𝑁 / 𝑦) = 𝑧)
3229, 30, 313bitr4g 223 . 2 ((𝑁 ∈ ℕ ∧ (𝑦𝐴𝑧𝐴)) → (𝑦 = (𝑁 / 𝑧) ↔ 𝑧 = (𝑁 / 𝑦)))
331, 6, 10, 32f1o2d 6217 1 (𝑁 ∈ ℕ → 𝐹:𝐴1-1-onto𝐴)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  {crab 2512   class class class wbr 4083  cmpt 4145  1-1-ontowf1o 5317  (class class class)co 6007  cc 8005   · cmul 8012   / cdiv 8827  cn 9118  cdvds 12306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-mulrcl 8106  ax-addcom 8107  ax-mulcom 8108  ax-addass 8109  ax-mulass 8110  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-1rid 8114  ax-0id 8115  ax-rnegex 8116  ax-precex 8117  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-apti 8122  ax-pre-ltadd 8123  ax-pre-mulgt0 8124  ax-pre-mulext 8125
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-po 4387  df-iso 4388  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-reap 8730  df-ap 8737  df-div 8828  df-inn 9119  df-n0 9378  df-z 9455  df-dvds 12307
This theorem is referenced by:  phisum  12771
  Copyright terms: Public domain W3C validator