| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsflip | GIF version | ||
| Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.) |
| Ref | Expression |
|---|---|
| dvdsflip.a | ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
| dvdsflip.f | ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) |
| Ref | Expression |
|---|---|
| dvdsflip | ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsflip.f | . 2 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) | |
| 2 | dvdsflip.a | . . . . 5 ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} | |
| 3 | 2 | eleq2i 2296 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 4 | dvdsdivcl 12369 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
| 5 | 3, 4 | sylan2b 287 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 6 | 5, 2 | eleqtrrdi 2323 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴) → (𝑁 / 𝑦) ∈ 𝐴) |
| 7 | 2 | eleq2i 2296 | . . . 4 ⊢ (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 8 | dvdsdivcl 12369 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
| 9 | 7, 8 | sylan2b 287 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 10 | 9, 2 | eleqtrrdi 2323 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴) → (𝑁 / 𝑧) ∈ 𝐴) |
| 11 | ssrab2 3309 | . . . . . . 7 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ | |
| 12 | 2, 11 | eqsstri 3256 | . . . . . 6 ⊢ 𝐴 ⊆ ℕ |
| 13 | 12 | sseli 3220 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℕ) |
| 14 | 12 | sseli 3220 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ ℕ) |
| 15 | 13, 14 | anim12i 338 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) |
| 16 | nncn 9126 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 17 | 16 | adantr 276 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑁 ∈ ℂ) |
| 18 | nncn 9126 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 19 | 18 | ad2antrl 490 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℂ) |
| 20 | nncn 9126 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
| 21 | 20 | ad2antll 491 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℂ) |
| 22 | simprr 531 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℕ) | |
| 23 | 22 | nnap0d 9164 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 # 0) |
| 24 | 17, 19, 21, 23 | divmulap3d 8980 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ 𝑁 = (𝑦 · 𝑧))) |
| 25 | simprl 529 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℕ) | |
| 26 | 25 | nnap0d 9164 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 # 0) |
| 27 | 17, 21, 19, 26 | divmulap2d 8979 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑦) = 𝑧 ↔ 𝑁 = (𝑦 · 𝑧))) |
| 28 | 24, 27 | bitr4d 191 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧)) |
| 29 | 15, 28 | sylan2 286 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧)) |
| 30 | eqcom 2231 | . . 3 ⊢ (𝑦 = (𝑁 / 𝑧) ↔ (𝑁 / 𝑧) = 𝑦) | |
| 31 | eqcom 2231 | . . 3 ⊢ (𝑧 = (𝑁 / 𝑦) ↔ (𝑁 / 𝑦) = 𝑧) | |
| 32 | 29, 30, 31 | 3bitr4g 223 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦 = (𝑁 / 𝑧) ↔ 𝑧 = (𝑁 / 𝑦))) |
| 33 | 1, 6, 10, 32 | f1o2d 6217 | 1 ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1395 ∈ wcel 2200 {crab 2512 class class class wbr 4083 ↦ cmpt 4145 –1-1-onto→wf1o 5317 (class class class)co 6007 ℂcc 8005 · cmul 8012 / cdiv 8827 ℕcn 9118 ∥ cdvds 12306 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-mulrcl 8106 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-0lt1 8113 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-precex 8117 ax-cnre 8118 ax-pre-ltirr 8119 ax-pre-ltwlin 8120 ax-pre-lttrn 8121 ax-pre-apti 8122 ax-pre-ltadd 8123 ax-pre-mulgt0 8124 ax-pre-mulext 8125 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-po 4387 df-iso 4388 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-xr 8193 df-ltxr 8194 df-le 8195 df-sub 8327 df-neg 8328 df-reap 8730 df-ap 8737 df-div 8828 df-inn 9119 df-n0 9378 df-z 9455 df-dvds 12307 |
| This theorem is referenced by: phisum 12771 |
| Copyright terms: Public domain | W3C validator |