Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsflip | GIF version |
Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.) |
Ref | Expression |
---|---|
dvdsflip.a | ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
dvdsflip.f | ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) |
Ref | Expression |
---|---|
dvdsflip | ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvdsflip.f | . 2 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) | |
2 | dvdsflip.a | . . . . 5 ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} | |
3 | 2 | eleq2i 2237 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
4 | dvdsdivcl 11810 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
5 | 3, 4 | sylan2b 285 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
6 | 5, 2 | eleqtrrdi 2264 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴) → (𝑁 / 𝑦) ∈ 𝐴) |
7 | 2 | eleq2i 2237 | . . . 4 ⊢ (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
8 | dvdsdivcl 11810 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
9 | 7, 8 | sylan2b 285 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
10 | 9, 2 | eleqtrrdi 2264 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴) → (𝑁 / 𝑧) ∈ 𝐴) |
11 | ssrab2 3232 | . . . . . . 7 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ | |
12 | 2, 11 | eqsstri 3179 | . . . . . 6 ⊢ 𝐴 ⊆ ℕ |
13 | 12 | sseli 3143 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℕ) |
14 | 12 | sseli 3143 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ ℕ) |
15 | 13, 14 | anim12i 336 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) |
16 | nncn 8886 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
17 | 16 | adantr 274 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑁 ∈ ℂ) |
18 | nncn 8886 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
19 | 18 | ad2antrl 487 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℂ) |
20 | nncn 8886 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
21 | 20 | ad2antll 488 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℂ) |
22 | simprr 527 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℕ) | |
23 | 22 | nnap0d 8924 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 # 0) |
24 | 17, 19, 21, 23 | divmulap3d 8742 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ 𝑁 = (𝑦 · 𝑧))) |
25 | simprl 526 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℕ) | |
26 | 25 | nnap0d 8924 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 # 0) |
27 | 17, 21, 19, 26 | divmulap2d 8741 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑦) = 𝑧 ↔ 𝑁 = (𝑦 · 𝑧))) |
28 | 24, 27 | bitr4d 190 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧)) |
29 | 15, 28 | sylan2 284 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧)) |
30 | eqcom 2172 | . . 3 ⊢ (𝑦 = (𝑁 / 𝑧) ↔ (𝑁 / 𝑧) = 𝑦) | |
31 | eqcom 2172 | . . 3 ⊢ (𝑧 = (𝑁 / 𝑦) ↔ (𝑁 / 𝑦) = 𝑧) | |
32 | 29, 30, 31 | 3bitr4g 222 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦 = (𝑁 / 𝑧) ↔ 𝑧 = (𝑁 / 𝑦))) |
33 | 1, 6, 10, 32 | f1o2d 6054 | 1 ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 {crab 2452 class class class wbr 3989 ↦ cmpt 4050 –1-1-onto→wf1o 5197 (class class class)co 5853 ℂcc 7772 · cmul 7779 / cdiv 8589 ℕcn 8878 ∥ cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-dvds 11750 |
This theorem is referenced by: phisum 12194 |
Copyright terms: Public domain | W3C validator |