| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsflip | GIF version | ||
| Description: An involution of the divisors of a number. (Contributed by Stefan O'Rear, 12-Sep-2015.) (Proof shortened by Mario Carneiro, 13-May-2016.) |
| Ref | Expression |
|---|---|
| dvdsflip.a | ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} |
| dvdsflip.f | ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) |
| Ref | Expression |
|---|---|
| dvdsflip | ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dvdsflip.f | . 2 ⊢ 𝐹 = (𝑦 ∈ 𝐴 ↦ (𝑁 / 𝑦)) | |
| 2 | dvdsflip.a | . . . . 5 ⊢ 𝐴 = {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} | |
| 3 | 2 | eleq2i 2263 | . . . 4 ⊢ (𝑦 ∈ 𝐴 ↔ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 4 | dvdsdivcl 12032 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
| 5 | 3, 4 | sylan2b 287 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴) → (𝑁 / 𝑦) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 6 | 5, 2 | eleqtrrdi 2290 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑦 ∈ 𝐴) → (𝑁 / 𝑦) ∈ 𝐴) |
| 7 | 2 | eleq2i 2263 | . . . 4 ⊢ (𝑧 ∈ 𝐴 ↔ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 8 | dvdsdivcl 12032 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) | |
| 9 | 7, 8 | sylan2b 287 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴) → (𝑁 / 𝑧) ∈ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁}) |
| 10 | 9, 2 | eleqtrrdi 2290 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ 𝑧 ∈ 𝐴) → (𝑁 / 𝑧) ∈ 𝐴) |
| 11 | ssrab2 3269 | . . . . . . 7 ⊢ {𝑥 ∈ ℕ ∣ 𝑥 ∥ 𝑁} ⊆ ℕ | |
| 12 | 2, 11 | eqsstri 3216 | . . . . . 6 ⊢ 𝐴 ⊆ ℕ |
| 13 | 12 | sseli 3180 | . . . . 5 ⊢ (𝑦 ∈ 𝐴 → 𝑦 ∈ ℕ) |
| 14 | 12 | sseli 3180 | . . . . 5 ⊢ (𝑧 ∈ 𝐴 → 𝑧 ∈ ℕ) |
| 15 | 13, 14 | anim12i 338 | . . . 4 ⊢ ((𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴) → (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) |
| 16 | nncn 9015 | . . . . . . 7 ⊢ (𝑁 ∈ ℕ → 𝑁 ∈ ℂ) | |
| 17 | 16 | adantr 276 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑁 ∈ ℂ) |
| 18 | nncn 9015 | . . . . . . 7 ⊢ (𝑦 ∈ ℕ → 𝑦 ∈ ℂ) | |
| 19 | 18 | ad2antrl 490 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℂ) |
| 20 | nncn 9015 | . . . . . . 7 ⊢ (𝑧 ∈ ℕ → 𝑧 ∈ ℂ) | |
| 21 | 20 | ad2antll 491 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℂ) |
| 22 | simprr 531 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 ∈ ℕ) | |
| 23 | 22 | nnap0d 9053 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑧 # 0) |
| 24 | 17, 19, 21, 23 | divmulap3d 8869 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ 𝑁 = (𝑦 · 𝑧))) |
| 25 | simprl 529 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 ∈ ℕ) | |
| 26 | 25 | nnap0d 9053 | . . . . . 6 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → 𝑦 # 0) |
| 27 | 17, 21, 19, 26 | divmulap2d 8868 | . . . . 5 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑦) = 𝑧 ↔ 𝑁 = (𝑦 · 𝑧))) |
| 28 | 24, 27 | bitr4d 191 | . . . 4 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ ℕ ∧ 𝑧 ∈ ℕ)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧)) |
| 29 | 15, 28 | sylan2 286 | . . 3 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → ((𝑁 / 𝑧) = 𝑦 ↔ (𝑁 / 𝑦) = 𝑧)) |
| 30 | eqcom 2198 | . . 3 ⊢ (𝑦 = (𝑁 / 𝑧) ↔ (𝑁 / 𝑧) = 𝑦) | |
| 31 | eqcom 2198 | . . 3 ⊢ (𝑧 = (𝑁 / 𝑦) ↔ (𝑁 / 𝑦) = 𝑧) | |
| 32 | 29, 30, 31 | 3bitr4g 223 | . 2 ⊢ ((𝑁 ∈ ℕ ∧ (𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴)) → (𝑦 = (𝑁 / 𝑧) ↔ 𝑧 = (𝑁 / 𝑦))) |
| 33 | 1, 6, 10, 32 | f1o2d 6132 | 1 ⊢ (𝑁 ∈ ℕ → 𝐹:𝐴–1-1-onto→𝐴) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 {crab 2479 class class class wbr 4034 ↦ cmpt 4095 –1-1-onto→wf1o 5258 (class class class)co 5925 ℂcc 7894 · cmul 7901 / cdiv 8716 ℕcn 9007 ∥ cdvds 11969 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-dvds 11970 |
| This theorem is referenced by: phisum 12434 |
| Copyright terms: Public domain | W3C validator |