Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > nnap0d | Unicode version |
Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.) |
Ref | Expression |
---|---|
nnge1d.1 |
Ref | Expression |
---|---|
nnap0d | # |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 | . 2 | |
2 | nnap0 8886 | . 2 # | |
3 | 1, 2 | syl 14 | 1 # |
Colors of variables: wff set class |
Syntax hints: wi 4 wcel 2136 class class class wbr 3982 cc0 7753 # cap 8479 cn 8857 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-mulrcl 7852 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-precex 7863 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 ax-pre-mulgt0 7870 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-reap 8473 df-ap 8480 df-inn 8858 |
This theorem is referenced by: qtri3or 10178 qbtwnrelemcalc 10191 intfracq 10255 flqdiv 10256 modqmulnn 10277 facndiv 10652 bcn0 10668 bcn1 10671 bcm1k 10673 bcp1n 10674 bcp1nk 10675 bcval5 10676 bcpasc 10679 permnn 10684 divcnv 11438 trireciplem 11441 trirecip 11442 expcnvap0 11443 geo2sum 11455 geo2lim 11457 cvgratnnlemfm 11470 cvgratnnlemrate 11471 mertenslemi1 11476 eftabs 11597 efcllemp 11599 ege2le3 11612 efcj 11614 efaddlem 11615 eftlub 11631 eirraplem 11717 dvdsflip 11789 dvdsgcdidd 11927 mulgcd 11949 gcddiv 11952 sqgcd 11962 lcmgcdlem 12009 qredeu 12029 prmind2 12052 isprm5lem 12073 divgcdodd 12075 sqrt2irrlem 12093 oddpwdclemxy 12101 oddpwdclemodd 12104 oddpwdclemdc 12105 sqrt2irraplemnn 12111 sqrt2irrap 12112 qmuldeneqnum 12127 divnumden 12128 numdensq 12134 hashdvds 12153 phiprmpw 12154 pythagtriplem19 12214 pcprendvds2 12223 pcpremul 12225 pceulem 12226 pceu 12227 pcdiv 12234 pcqmul 12235 pcid 12255 pc2dvds 12261 dvdsprmpweqle 12268 pcaddlem 12270 pcadd 12271 oddprmdvds 12284 pockthlem 12286 4sqlem5 12312 mul4sqlem 12323 logbgcd1irraplemexp 13526 logbgcd1irraplemap 13527 2sqlem3 13593 2sqlem8 13599 cvgcmp2nlemabs 13911 redcwlpolemeq1 13933 |
Copyright terms: Public domain | W3C validator |