![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > nnap0d | Unicode version |
Description: A positive integer is apart from zero. (Contributed by Jim Kingdon, 25-Aug-2021.) |
Ref | Expression |
---|---|
nnge1d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
nnap0d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnge1d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | nnap0 8607 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | syl 14 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 ax-setind 4390 ax-cnex 7586 ax-resscn 7587 ax-1cn 7588 ax-1re 7589 ax-icn 7590 ax-addcl 7591 ax-addrcl 7592 ax-mulcl 7593 ax-mulrcl 7594 ax-addcom 7595 ax-mulcom 7596 ax-addass 7597 ax-mulass 7598 ax-distr 7599 ax-i2m1 7600 ax-0lt1 7601 ax-1rid 7602 ax-0id 7603 ax-rnegex 7604 ax-precex 7605 ax-cnre 7606 ax-pre-ltirr 7607 ax-pre-ltwlin 7608 ax-pre-lttrn 7609 ax-pre-apti 7610 ax-pre-ltadd 7611 ax-pre-mulgt0 7612 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-nel 2363 df-ral 2380 df-rex 2381 df-reu 2382 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-int 3719 df-br 3876 df-opab 3930 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-iota 5024 df-fun 5061 df-fv 5067 df-riota 5662 df-ov 5709 df-oprab 5710 df-mpo 5711 df-pnf 7674 df-mnf 7675 df-xr 7676 df-ltxr 7677 df-le 7678 df-sub 7806 df-neg 7807 df-reap 8203 df-ap 8210 df-inn 8579 |
This theorem is referenced by: qtri3or 9861 qbtwnrelemcalc 9874 intfracq 9934 flqdiv 9935 modqmulnn 9956 facndiv 10326 bcn0 10342 bcn1 10345 bcm1k 10347 bcp1n 10348 bcp1nk 10349 bcval5 10350 bcpasc 10353 permnn 10358 divcnv 11105 trireciplem 11108 trirecip 11109 expcnvap0 11110 geo2sum 11122 geo2lim 11124 cvgratnnlemfm 11137 cvgratnnlemrate 11138 mertenslemi1 11143 eftabs 11160 efcllemp 11162 ege2le3 11175 efcj 11177 efaddlem 11178 eftlub 11194 eirraplem 11278 dvdsflip 11344 mulgcd 11497 gcddiv 11500 sqgcd 11510 lcmgcdlem 11551 qredeu 11571 prmind2 11594 divgcdodd 11614 sqrt2irrlem 11632 oddpwdclemxy 11639 oddpwdclemodd 11642 oddpwdclemdc 11643 sqrt2irraplemnn 11649 sqrt2irrap 11650 qmuldeneqnum 11665 divnumden 11666 numdensq 11672 hashdvds 11689 phiprmpw 11690 cvgcmp2nlemabs 12811 |
Copyright terms: Public domain | W3C validator |