ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrcan3 Unicode version

Theorem dvrcan3 14105
Description: A cancellation law for division. (divcanap3 8845 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
dvrass.b  |-  B  =  ( Base `  R
)
dvrass.o  |-  U  =  (Unit `  R )
dvrass.d  |-  ./  =  (/r
`  R )
dvrass.t  |-  .x.  =  ( .r `  R )
Assertion
Ref Expression
dvrcan3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  ./  Y )  =  X )

Proof of Theorem dvrcan3
StepHypRef Expression
1 simp1 1021 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  R  e.  Ring )
2 simp2 1022 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  X  e.  B )
3 dvrass.b . . . . 5  |-  B  =  ( Base `  R
)
43a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  B  =  ( Base `  R
) )
5 dvrass.o . . . . 5  |-  U  =  (Unit `  R )
65a1i 9 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  U  =  (Unit `  R )
)
7 ringsrg 14010 . . . . 5  |-  ( R  e.  Ring  ->  R  e. SRing
)
81, 7syl 14 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  R  e. SRing )
9 simp3 1023 . . . 4  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  Y  e.  U )
104, 6, 8, 9unitcld 14072 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  Y  e.  B )
11 dvrass.d . . . 4  |-  ./  =  (/r
`  R )
12 dvrass.t . . . 4  |-  .x.  =  ( .r `  R )
133, 5, 11, 12dvrass 14103 . . 3  |-  ( ( R  e.  Ring  /\  ( X  e.  B  /\  Y  e.  B  /\  Y  e.  U )
)  ->  ( ( X  .x.  Y )  ./  Y )  =  ( X  .x.  ( Y 
./  Y ) ) )
141, 2, 10, 9, 13syl13anc 1273 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  ./  Y )  =  ( X  .x.  ( Y  ./  Y ) ) )
15 eqid 2229 . . . . 5  |-  ( 1r
`  R )  =  ( 1r `  R
)
165, 11, 15dvrid 14101 . . . 4  |-  ( ( R  e.  Ring  /\  Y  e.  U )  ->  ( Y  ./  Y )  =  ( 1r `  R
) )
17163adant2 1040 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  ( Y  ./  Y )  =  ( 1r `  R
) )
1817oveq2d 6017 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  ( X  .x.  ( Y  ./  Y ) )  =  ( X  .x.  ( 1r `  R ) ) )
193, 12, 15ringridm 13987 . . 3  |-  ( ( R  e.  Ring  /\  X  e.  B )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
20193adant3 1041 . 2  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  ( X  .x.  ( 1r `  R ) )  =  X )
2114, 18, 203eqtrd 2266 1  |-  ( ( R  e.  Ring  /\  X  e.  B  /\  Y  e.  U )  ->  (
( X  .x.  Y
)  ./  Y )  =  X )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001   Basecbs 13032   .rcmulr 13111   1rcur 13922  SRingcsrg 13926   Ringcrg 13959  Unitcui 14050  /rcdvr 14095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-tpos 6391  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-cmn 13823  df-abl 13824  df-mgp 13884  df-ur 13923  df-srg 13927  df-ring 13961  df-oppr 14031  df-dvdsr 14052  df-unit 14053  df-invr 14085  df-dvr 14096
This theorem is referenced by:  lgseisenlem3  15751
  Copyright terms: Public domain W3C validator