ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvrcan3 GIF version

Theorem dvrcan3 14099
Description: A cancellation law for division. (divcanap3 8841 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.)
Hypotheses
Ref Expression
dvrass.b 𝐵 = (Base‘𝑅)
dvrass.o 𝑈 = (Unit‘𝑅)
dvrass.d / = (/r𝑅)
dvrass.t · = (.r𝑅)
Assertion
Ref Expression
dvrcan3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋)

Proof of Theorem dvrcan3
StepHypRef Expression
1 simp1 1021 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑅 ∈ Ring)
2 simp2 1022 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑋𝐵)
3 dvrass.b . . . . 5 𝐵 = (Base‘𝑅)
43a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝐵 = (Base‘𝑅))
5 dvrass.o . . . . 5 𝑈 = (Unit‘𝑅)
65a1i 9 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑈 = (Unit‘𝑅))
7 ringsrg 14005 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
81, 7syl 14 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑅 ∈ SRing)
9 simp3 1023 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑌𝑈)
104, 6, 8, 9unitcld 14066 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → 𝑌𝐵)
11 dvrass.d . . . 4 / = (/r𝑅)
12 dvrass.t . . . 4 · = (.r𝑅)
133, 5, 11, 12dvrass 14097 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝑌𝐵𝑌𝑈)) → ((𝑋 · 𝑌) / 𝑌) = (𝑋 · (𝑌 / 𝑌)))
141, 2, 10, 9, 13syl13anc 1273 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · 𝑌) / 𝑌) = (𝑋 · (𝑌 / 𝑌)))
15 eqid 2229 . . . . 5 (1r𝑅) = (1r𝑅)
165, 11, 15dvrid 14095 . . . 4 ((𝑅 ∈ Ring ∧ 𝑌𝑈) → (𝑌 / 𝑌) = (1r𝑅))
17163adant2 1040 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑌 / 𝑌) = (1r𝑅))
1817oveq2d 6016 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (𝑌 / 𝑌)) = (𝑋 · (1r𝑅)))
193, 12, 15ringridm 13982 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (𝑋 · (1r𝑅)) = 𝑋)
20193adant3 1041 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → (𝑋 · (1r𝑅)) = 𝑋)
2114, 18, 203eqtrd 2266 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵𝑌𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋)
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  .rcmulr 13106  1rcur 13917  SRingcsrg 13921  Ringcrg 13954  Unitcui 14045  /rcdvr 14089
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-tpos 6389  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-cmn 13818  df-abl 13819  df-mgp 13879  df-ur 13918  df-srg 13922  df-ring 13956  df-oppr 14026  df-dvdsr 14047  df-unit 14048  df-invr 14079  df-dvr 14090
This theorem is referenced by:  lgseisenlem3  15745
  Copyright terms: Public domain W3C validator