| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvrcan3 | GIF version | ||
| Description: A cancellation law for division. (divcanap3 8786 analog.) (Contributed by Mario Carneiro, 2-Jul-2014.) (Revised by Mario Carneiro, 18-Jun-2015.) |
| Ref | Expression |
|---|---|
| dvrass.b | ⊢ 𝐵 = (Base‘𝑅) |
| dvrass.o | ⊢ 𝑈 = (Unit‘𝑅) |
| dvrass.d | ⊢ / = (/r‘𝑅) |
| dvrass.t | ⊢ · = (.r‘𝑅) |
| Ref | Expression |
|---|---|
| dvrcan3 | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ Ring) | |
| 2 | simp2 1001 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑋 ∈ 𝐵) | |
| 3 | dvrass.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 4 | 3 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝐵 = (Base‘𝑅)) |
| 5 | dvrass.o | . . . . 5 ⊢ 𝑈 = (Unit‘𝑅) | |
| 6 | 5 | a1i 9 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑈 = (Unit‘𝑅)) |
| 7 | ringsrg 13879 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 8 | 1, 7 | syl 14 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑅 ∈ SRing) |
| 9 | simp3 1002 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝑈) | |
| 10 | 4, 6, 8, 9 | unitcld 13940 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → 𝑌 ∈ 𝐵) |
| 11 | dvrass.d | . . . 4 ⊢ / = (/r‘𝑅) | |
| 12 | dvrass.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 13 | 3, 5, 11, 12 | dvrass 13971 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈)) → ((𝑋 · 𝑌) / 𝑌) = (𝑋 · (𝑌 / 𝑌))) |
| 14 | 1, 2, 10, 9, 13 | syl13anc 1252 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = (𝑋 · (𝑌 / 𝑌))) |
| 15 | eqid 2206 | . . . . 5 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 16 | 5, 11, 15 | dvrid 13969 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑌 ∈ 𝑈) → (𝑌 / 𝑌) = (1r‘𝑅)) |
| 17 | 16 | 3adant2 1019 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑌 / 𝑌) = (1r‘𝑅)) |
| 18 | 17 | oveq2d 5972 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (𝑌 / 𝑌)) = (𝑋 · (1r‘𝑅))) |
| 19 | 3, 12, 15 | ringridm 13856 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (𝑋 · (1r‘𝑅)) = 𝑋) |
| 20 | 19 | 3adant3 1020 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → (𝑋 · (1r‘𝑅)) = 𝑋) |
| 21 | 14, 18, 20 | 3eqtrd 2243 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑈) → ((𝑋 · 𝑌) / 𝑌) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5279 (class class class)co 5956 Basecbs 12902 .rcmulr 12980 1rcur 13791 SRingcsrg 13795 Ringcrg 13828 Unitcui 13919 /rcdvr 13963 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-addcom 8040 ax-addass 8042 ax-i2m1 8045 ax-0lt1 8046 ax-0id 8048 ax-rnegex 8049 ax-pre-ltirr 8052 ax-pre-lttrn 8054 ax-pre-ltadd 8056 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3622 df-sn 3643 df-pr 3644 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-id 4347 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-tpos 6343 df-pnf 8124 df-mnf 8125 df-ltxr 8127 df-inn 9052 df-2 9110 df-3 9111 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-iress 12910 df-plusg 12992 df-mulr 12993 df-0g 13160 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-grp 13405 df-minusg 13406 df-cmn 13692 df-abl 13693 df-mgp 13753 df-ur 13792 df-srg 13796 df-ring 13830 df-oppr 13900 df-dvdsr 13921 df-unit 13922 df-invr 13953 df-dvr 13964 |
| This theorem is referenced by: lgseisenlem3 15619 |
| Copyright terms: Public domain | W3C validator |