ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  redivclap Unicode version

Theorem redivclap 8618
Description: Closure law for division of reals. (Contributed by Jim Kingdon, 26-Feb-2020.)
Assertion
Ref Expression
redivclap  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  ( A  /  B )  e.  RR )

Proof of Theorem redivclap
StepHypRef Expression
1 simp1 986 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  A  e.  RR )
21recnd 7918 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  A  e.  CC )
3 simp2 987 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  B  e.  RR )
43recnd 7918 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  B  e.  CC )
5 simp3 988 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  B #  0 )
6 divrecap 8575 . . 3  |-  ( ( A  e.  CC  /\  B  e.  CC  /\  B #  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
72, 4, 5, 6syl3anc 1227 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
8 rerecclap 8617 . . . 4  |-  ( ( B  e.  RR  /\  B #  0 )  ->  (
1  /  B )  e.  RR )
983adant1 1004 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  (
1  /  B )  e.  RR )
101, 9remulcld 7920 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  ( A  x.  ( 1  /  B ) )  e.  RR )
117, 10eqeltrd 2241 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  B #  0 )  ->  ( A  /  B )  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 967    = wceq 1342    e. wcel 2135   class class class wbr 3976  (class class class)co 5836   CCcc 7742   RRcr 7743   0cc0 7744   1c1 7745    x. cmul 7749   # cap 8470    / cdiv 8559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-sep 4094  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-cnex 7835  ax-resscn 7836  ax-1cn 7837  ax-1re 7838  ax-icn 7839  ax-addcl 7840  ax-addrcl 7841  ax-mulcl 7842  ax-mulrcl 7843  ax-addcom 7844  ax-mulcom 7845  ax-addass 7846  ax-mulass 7847  ax-distr 7848  ax-i2m1 7849  ax-0lt1 7850  ax-1rid 7851  ax-0id 7852  ax-rnegex 7853  ax-precex 7854  ax-cnre 7855  ax-pre-ltirr 7856  ax-pre-ltwlin 7857  ax-pre-lttrn 7858  ax-pre-apti 7859  ax-pre-ltadd 7860  ax-pre-mulgt0 7861  ax-pre-mulext 7862
This theorem depends on definitions:  df-bi 116  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-nel 2430  df-ral 2447  df-rex 2448  df-reu 2449  df-rmo 2450  df-rab 2451  df-v 2723  df-sbc 2947  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-br 3977  df-opab 4038  df-id 4265  df-po 4268  df-iso 4269  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-iota 5147  df-fun 5184  df-fv 5190  df-riota 5792  df-ov 5839  df-oprab 5840  df-mpo 5841  df-pnf 7926  df-mnf 7927  df-xr 7928  df-ltxr 7929  df-le 7930  df-sub 8062  df-neg 8063  df-reap 8464  df-ap 8471  df-div 8560
This theorem is referenced by:  redivclapzi  8665  redivclapd  8722  lediv1  8755  nndivre  8884  rehalfcl  9075  qre  9554  rpdivcl  9606  rerpdivcl  9611  resin4p  11645  recos4p  11646  retanclap  11649  sin01gt0  11688  cos01gt0  11689
  Copyright terms: Public domain W3C validator