| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > znfi | Unicode version | ||
| Description: The ℤ/nℤ structure is a finite ring. (Contributed by Mario Carneiro, 2-May-2016.) |
| Ref | Expression |
|---|---|
| zntos.y |
|
| znhash.1 |
|
| Ref | Expression |
|---|---|
| znfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0z 9398 |
. . 3
| |
| 2 | nnz 9406 |
. . 3
| |
| 3 | fzofig 10594 |
. . 3
| |
| 4 | 1, 2, 3 | sylancr 414 |
. 2
|
| 5 | nnnn0 9317 |
. . . . . 6
| |
| 6 | zntos.y |
. . . . . . 7
| |
| 7 | znhash.1 |
. . . . . . 7
| |
| 8 | eqid 2206 |
. . . . . . 7
| |
| 9 | eqid 2206 |
. . . . . . 7
| |
| 10 | 6, 7, 8, 9 | znf1o 14483 |
. . . . . 6
|
| 11 | 5, 10 | syl 14 |
. . . . 5
|
| 12 | nnne0 9079 |
. . . . . 6
| |
| 13 | ifnefalse 3586 |
. . . . . 6
| |
| 14 | f1oeq2 5522 |
. . . . . 6
| |
| 15 | 12, 13, 14 | 3syl 17 |
. . . . 5
|
| 16 | 11, 15 | mpbid 147 |
. . . 4
|
| 17 | f1oeng 6860 |
. . . 4
| |
| 18 | 4, 16, 17 | syl2anc 411 |
. . 3
|
| 19 | 18 | ensymd 6887 |
. 2
|
| 20 | enfii 6985 |
. 2
| |
| 21 | 4, 19, 20 | syl2anc 411 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4166 ax-sep 4169 ax-nul 4177 ax-pow 4225 ax-pr 4260 ax-un 4487 ax-setind 4592 ax-iinf 4643 ax-cnex 8031 ax-resscn 8032 ax-1cn 8033 ax-1re 8034 ax-icn 8035 ax-addcl 8036 ax-addrcl 8037 ax-mulcl 8038 ax-mulrcl 8039 ax-addcom 8040 ax-mulcom 8041 ax-addass 8042 ax-mulass 8043 ax-distr 8044 ax-i2m1 8045 ax-0lt1 8046 ax-1rid 8047 ax-0id 8048 ax-rnegex 8049 ax-precex 8050 ax-cnre 8051 ax-pre-ltirr 8052 ax-pre-ltwlin 8053 ax-pre-lttrn 8054 ax-pre-apti 8055 ax-pre-ltadd 8056 ax-pre-mulgt0 8057 ax-pre-mulext 8058 ax-arch 8059 ax-addf 8062 ax-mulf 8063 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3622 df-sn 3643 df-pr 3644 df-tp 3645 df-op 3646 df-uni 3856 df-int 3891 df-iun 3934 df-br 4051 df-opab 4113 df-mpt 4114 df-tr 4150 df-id 4347 df-po 4350 df-iso 4351 df-iord 4420 df-on 4422 df-ilim 4423 df-suc 4425 df-iom 4646 df-xp 4688 df-rel 4689 df-cnv 4690 df-co 4691 df-dm 4692 df-rn 4693 df-res 4694 df-ima 4695 df-iota 5240 df-fun 5281 df-fn 5282 df-f 5283 df-f1 5284 df-fo 5285 df-f1o 5286 df-fv 5287 df-riota 5911 df-ov 5959 df-oprab 5960 df-mpo 5961 df-1st 6238 df-2nd 6239 df-tpos 6343 df-recs 6403 df-frec 6489 df-1o 6514 df-er 6632 df-ec 6634 df-qs 6638 df-map 6749 df-en 6840 df-fin 6842 df-pnf 8124 df-mnf 8125 df-xr 8126 df-ltxr 8127 df-le 8128 df-sub 8260 df-neg 8261 df-reap 8663 df-ap 8670 df-div 8761 df-inn 9052 df-2 9110 df-3 9111 df-4 9112 df-5 9113 df-6 9114 df-7 9115 df-8 9116 df-9 9117 df-n0 9311 df-z 9388 df-dec 9520 df-uz 9664 df-q 9756 df-rp 9791 df-fz 10146 df-fzo 10280 df-fl 10430 df-mod 10485 df-seqfrec 10610 df-cj 11223 df-abs 11380 df-dvds 12169 df-struct 12904 df-ndx 12905 df-slot 12906 df-base 12908 df-sets 12909 df-iress 12910 df-plusg 12992 df-mulr 12993 df-starv 12994 df-sca 12995 df-vsca 12996 df-ip 12997 df-tset 12998 df-ple 12999 df-ds 13001 df-unif 13002 df-0g 13160 df-topgen 13162 df-iimas 13204 df-qus 13205 df-mgm 13258 df-sgrp 13304 df-mnd 13319 df-mhm 13361 df-grp 13405 df-minusg 13406 df-sbg 13407 df-mulg 13526 df-subg 13576 df-nsg 13577 df-eqg 13578 df-ghm 13647 df-cmn 13692 df-abl 13693 df-mgp 13753 df-rng 13765 df-ur 13792 df-srg 13796 df-ring 13830 df-cring 13831 df-oppr 13900 df-dvdsr 13921 df-rhm 13984 df-subrg 14051 df-lmod 14121 df-lssm 14185 df-lsp 14219 df-sra 14267 df-rgmod 14268 df-lidl 14301 df-rsp 14302 df-2idl 14332 df-bl 14378 df-mopn 14379 df-fg 14381 df-metu 14382 df-cnfld 14389 df-zring 14423 df-zrh 14446 df-zn 14448 |
| This theorem is referenced by: znhash 14488 znidom 14489 znidomb 14490 |
| Copyright terms: Public domain | W3C validator |