| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fzctr | GIF version | ||
| Description: Lemma for theorems about the central binomial coefficient. (Contributed by Mario Carneiro, 8-Mar-2014.) (Revised by Mario Carneiro, 2-Aug-2014.) |
| Ref | Expression |
|---|---|
| fzctr | ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ge0 9333 | . 2 ⊢ (𝑁 ∈ ℕ0 → 0 ≤ 𝑁) | |
| 2 | nn0re 9317 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ) | |
| 3 | nn0addge1 9354 | . . . 4 ⊢ ((𝑁 ∈ ℝ ∧ 𝑁 ∈ ℕ0) → 𝑁 ≤ (𝑁 + 𝑁)) | |
| 4 | 2, 3 | mpancom 422 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ≤ (𝑁 + 𝑁)) |
| 5 | nn0cn 9318 | . . . 4 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ) | |
| 6 | 5 | 2timesd 9293 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2 · 𝑁) = (𝑁 + 𝑁)) |
| 7 | 4, 6 | breqtrrd 4076 | . 2 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ≤ (2 · 𝑁)) |
| 8 | nn0z 9405 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ) | |
| 9 | 0zd 9397 | . . 3 ⊢ (𝑁 ∈ ℕ0 → 0 ∈ ℤ) | |
| 10 | 2z 9413 | . . . 4 ⊢ 2 ∈ ℤ | |
| 11 | zmulcl 9439 | . . . 4 ⊢ ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 · 𝑁) ∈ ℤ) | |
| 12 | 10, 8, 11 | sylancr 414 | . . 3 ⊢ (𝑁 ∈ ℕ0 → (2 · 𝑁) ∈ ℤ) |
| 13 | elfz 10149 | . . 3 ⊢ ((𝑁 ∈ ℤ ∧ 0 ∈ ℤ ∧ (2 · 𝑁) ∈ ℤ) → (𝑁 ∈ (0...(2 · 𝑁)) ↔ (0 ≤ 𝑁 ∧ 𝑁 ≤ (2 · 𝑁)))) | |
| 14 | 8, 9, 12, 13 | syl3anc 1250 | . 2 ⊢ (𝑁 ∈ ℕ0 → (𝑁 ∈ (0...(2 · 𝑁)) ↔ (0 ≤ 𝑁 ∧ 𝑁 ≤ (2 · 𝑁)))) |
| 15 | 1, 7, 14 | mpbir2and 947 | 1 ⊢ (𝑁 ∈ ℕ0 → 𝑁 ∈ (0...(2 · 𝑁))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∈ wcel 2177 class class class wbr 4048 (class class class)co 5954 ℝcr 7937 0cc0 7938 + caddc 7941 · cmul 7943 ≤ cle 8121 2c2 9100 ℕ0cn0 9308 ℤcz 9385 ...cfz 10143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4167 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-ltadd 8054 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3001 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-br 4049 df-opab 4111 df-id 4345 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-iota 5238 df-fun 5279 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-inn 9050 df-2 9108 df-n0 9309 df-z 9386 df-fz 10144 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |