ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ghmgrp1 GIF version

Theorem ghmgrp1 13748
Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.)
Assertion
Ref Expression
ghmgrp1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)

Proof of Theorem ghmgrp1
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2209 . . . 4 (Base‘𝑆) = (Base‘𝑆)
2 eqid 2209 . . . 4 (Base‘𝑇) = (Base‘𝑇)
3 eqid 2209 . . . 4 (+g𝑆) = (+g𝑆)
4 eqid 2209 . . . 4 (+g𝑇) = (+g𝑇)
51, 2, 3, 4isghm 13746 . . 3 (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g𝑆)𝑥)) = ((𝐹𝑦)(+g𝑇)(𝐹𝑥)))))
65simplbi 274 . 2 (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp))
76simpld 112 1 (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1375  wcel 2180  wral 2488  wf 5290  cfv 5294  (class class class)co 5974  Basecbs 12998  +gcplusg 13076  Grpcgrp 13499   GrpHom cghm 13743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-coll 4178  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1re 8061  ax-addrcl 8064
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-reu 2495  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-f1 5299  df-fo 5300  df-f1o 5301  df-fv 5302  df-ov 5977  df-oprab 5978  df-mpo 5979  df-inn 9079  df-ndx 13001  df-slot 13002  df-base 13004  df-ghm 13744
This theorem is referenced by:  ghmid  13752  ghminv  13753  ghmsub  13754  ghmmhm  13756  ghmmulg  13759  ghmrn  13760  resghm2  13764  resghm2b  13765  ghmco  13767  ghmpreima  13769  ghmeql  13770  ghmnsgima  13771  ghmnsgpreima  13772  ghmeqker  13774  f1ghm0to0  13775  ghmf1  13776  kerf1ghm  13777  ghmf1o  13778  ghmpropd  13786  invghm  13832
  Copyright terms: Public domain W3C validator