| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ghmgrp1 | GIF version | ||
| Description: A group homomorphism is only defined when the domain is a group. (Contributed by Stefan O'Rear, 31-Dec-2014.) |
| Ref | Expression |
|---|---|
| ghmgrp1 | ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2196 | . . . 4 ⊢ (Base‘𝑆) = (Base‘𝑆) | |
| 2 | eqid 2196 | . . . 4 ⊢ (Base‘𝑇) = (Base‘𝑇) | |
| 3 | eqid 2196 | . . . 4 ⊢ (+g‘𝑆) = (+g‘𝑆) | |
| 4 | eqid 2196 | . . . 4 ⊢ (+g‘𝑇) = (+g‘𝑇) | |
| 5 | 1, 2, 3, 4 | isghm 13451 | . . 3 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) ↔ ((𝑆 ∈ Grp ∧ 𝑇 ∈ Grp) ∧ (𝐹:(Base‘𝑆)⟶(Base‘𝑇) ∧ ∀𝑦 ∈ (Base‘𝑆)∀𝑥 ∈ (Base‘𝑆)(𝐹‘(𝑦(+g‘𝑆)𝑥)) = ((𝐹‘𝑦)(+g‘𝑇)(𝐹‘𝑥))))) |
| 6 | 5 | simplbi 274 | . 2 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → (𝑆 ∈ Grp ∧ 𝑇 ∈ Grp)) |
| 7 | 6 | simpld 112 | 1 ⊢ (𝐹 ∈ (𝑆 GrpHom 𝑇) → 𝑆 ∈ Grp) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⟶wf 5255 ‘cfv 5259 (class class class)co 5925 Basecbs 12705 +gcplusg 12782 Grpcgrp 13204 GrpHom cghm 13448 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7989 ax-resscn 7990 ax-1re 7992 ax-addrcl 7995 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-inn 9010 df-ndx 12708 df-slot 12709 df-base 12711 df-ghm 13449 |
| This theorem is referenced by: ghmid 13457 ghminv 13458 ghmsub 13459 ghmmhm 13461 ghmmulg 13464 ghmrn 13465 resghm2 13469 resghm2b 13470 ghmco 13472 ghmpreima 13474 ghmeql 13475 ghmnsgima 13476 ghmnsgpreima 13477 ghmeqker 13479 f1ghm0to0 13480 ghmf1 13481 kerf1ghm 13482 ghmf1o 13483 ghmpropd 13491 invghm 13537 |
| Copyright terms: Public domain | W3C validator |