ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  irrmulap Unicode version

Theorem irrmulap 9713
Description: The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9712. (Contributed by Jim Kingdon, 25-Aug-2025.)
Hypotheses
Ref Expression
irrmulap.a  |-  ( ph  ->  A  e.  RR )
irrmulap.aq  |-  ( ph  ->  A. q  e.  QQ  A #  q )
irrmulap.b  |-  ( ph  ->  B  e.  QQ )
irrmulap.b0  |-  ( ph  ->  B  =/=  0 )
irrmulap.q  |-  ( ph  ->  Q  e.  QQ )
Assertion
Ref Expression
irrmulap  |-  ( ph  ->  ( A  x.  B
) #  Q )
Distinct variable groups:    A, q    B, q    Q, q
Allowed substitution hint:    ph( q)

Proof of Theorem irrmulap
StepHypRef Expression
1 breq2 4033 . . . 4  |-  ( q  =  ( Q  /  B )  ->  ( A #  q  <->  A #  ( Q  /  B ) ) )
2 irrmulap.aq . . . 4  |-  ( ph  ->  A. q  e.  QQ  A #  q )
3 irrmulap.q . . . . 5  |-  ( ph  ->  Q  e.  QQ )
4 irrmulap.b . . . . 5  |-  ( ph  ->  B  e.  QQ )
5 irrmulap.b0 . . . . 5  |-  ( ph  ->  B  =/=  0 )
6 qdivcl 9708 . . . . 5  |-  ( ( Q  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( Q  /  B )  e.  QQ )
73, 4, 5, 6syl3anc 1249 . . . 4  |-  ( ph  ->  ( Q  /  B
)  e.  QQ )
81, 2, 7rspcdva 2869 . . 3  |-  ( ph  ->  A #  ( Q  /  B ) )
9 qcn 9699 . . . . 5  |-  ( ( Q  /  B )  e.  QQ  ->  ( Q  /  B )  e.  CC )
107, 9syl 14 . . . 4  |-  ( ph  ->  ( Q  /  B
)  e.  CC )
11 irrmulap.a . . . . 5  |-  ( ph  ->  A  e.  RR )
1211recnd 8048 . . . 4  |-  ( ph  ->  A  e.  CC )
13 apsym 8625 . . . 4  |-  ( ( ( Q  /  B
)  e.  CC  /\  A  e.  CC )  ->  ( ( Q  /  B ) #  A  <->  A #  ( Q  /  B ) ) )
1410, 12, 13syl2anc 411 . . 3  |-  ( ph  ->  ( ( Q  /  B ) #  A  <->  A #  ( Q  /  B ) ) )
158, 14mpbird 167 . 2  |-  ( ph  ->  ( Q  /  B
) #  A )
16 qcn 9699 . . . . 5  |-  ( Q  e.  QQ  ->  Q  e.  CC )
173, 16syl 14 . . . 4  |-  ( ph  ->  Q  e.  CC )
18 qcn 9699 . . . . 5  |-  ( B  e.  QQ  ->  B  e.  CC )
194, 18syl 14 . . . 4  |-  ( ph  ->  B  e.  CC )
20 0z 9328 . . . . . . 7  |-  0  e.  ZZ
21 zq 9691 . . . . . . 7  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
2220, 21ax-mp 5 . . . . . 6  |-  0  e.  QQ
23 qapne 9704 . . . . . 6  |-  ( ( B  e.  QQ  /\  0  e.  QQ )  ->  ( B #  0  <->  B  =/=  0 ) )
244, 22, 23sylancl 413 . . . . 5  |-  ( ph  ->  ( B #  0  <->  B  =/=  0 ) )
255, 24mpbird 167 . . . 4  |-  ( ph  ->  B #  0 )
2617, 19, 12, 25apdivmuld 8832 . . 3  |-  ( ph  ->  ( ( Q  /  B ) #  A  <->  ( B  x.  A ) #  Q ) )
2719, 12mulcomd 8041 . . . 4  |-  ( ph  ->  ( B  x.  A
)  =  ( A  x.  B ) )
2827breq1d 4039 . . 3  |-  ( ph  ->  ( ( B  x.  A ) #  Q  <->  ( A  x.  B ) #  Q ) )
2926, 28bitrd 188 . 2  |-  ( ph  ->  ( ( Q  /  B ) #  A  <->  ( A  x.  B ) #  Q ) )
3015, 29mpbid 147 1  |-  ( ph  ->  ( A  x.  B
) #  Q )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2164    =/= wne 2364   A.wral 2472   class class class wbr 4029  (class class class)co 5918   CCcc 7870   RRcr 7871   0cc0 7872    x. cmul 7877   # cap 8600    / cdiv 8691   ZZcz 9317   QQcq 9684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-po 4327  df-iso 4328  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-n0 9241  df-z 9318  df-q 9685
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator