ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  irrmulap Unicode version

Theorem irrmulap 9699
Description: The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9698. (Contributed by Jim Kingdon, 25-Aug-2025.)
Hypotheses
Ref Expression
irrmulap.a  |-  ( ph  ->  A  e.  RR )
irrmulap.aq  |-  ( ph  ->  A. q  e.  QQ  A #  q )
irrmulap.b  |-  ( ph  ->  B  e.  QQ )
irrmulap.b0  |-  ( ph  ->  B  =/=  0 )
irrmulap.q  |-  ( ph  ->  Q  e.  QQ )
Assertion
Ref Expression
irrmulap  |-  ( ph  ->  ( A  x.  B
) #  Q )
Distinct variable groups:    A, q    B, q    Q, q
Allowed substitution hint:    ph( q)

Proof of Theorem irrmulap
StepHypRef Expression
1 breq2 4029 . . . 4  |-  ( q  =  ( Q  /  B )  ->  ( A #  q  <->  A #  ( Q  /  B ) ) )
2 irrmulap.aq . . . 4  |-  ( ph  ->  A. q  e.  QQ  A #  q )
3 irrmulap.q . . . . 5  |-  ( ph  ->  Q  e.  QQ )
4 irrmulap.b . . . . 5  |-  ( ph  ->  B  e.  QQ )
5 irrmulap.b0 . . . . 5  |-  ( ph  ->  B  =/=  0 )
6 qdivcl 9694 . . . . 5  |-  ( ( Q  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( Q  /  B )  e.  QQ )
73, 4, 5, 6syl3anc 1249 . . . 4  |-  ( ph  ->  ( Q  /  B
)  e.  QQ )
81, 2, 7rspcdva 2865 . . 3  |-  ( ph  ->  A #  ( Q  /  B ) )
9 qcn 9685 . . . . 5  |-  ( ( Q  /  B )  e.  QQ  ->  ( Q  /  B )  e.  CC )
107, 9syl 14 . . . 4  |-  ( ph  ->  ( Q  /  B
)  e.  CC )
11 irrmulap.a . . . . 5  |-  ( ph  ->  A  e.  RR )
1211recnd 8034 . . . 4  |-  ( ph  ->  A  e.  CC )
13 apsym 8611 . . . 4  |-  ( ( ( Q  /  B
)  e.  CC  /\  A  e.  CC )  ->  ( ( Q  /  B ) #  A  <->  A #  ( Q  /  B ) ) )
1410, 12, 13syl2anc 411 . . 3  |-  ( ph  ->  ( ( Q  /  B ) #  A  <->  A #  ( Q  /  B ) ) )
158, 14mpbird 167 . 2  |-  ( ph  ->  ( Q  /  B
) #  A )
16 qcn 9685 . . . . 5  |-  ( Q  e.  QQ  ->  Q  e.  CC )
173, 16syl 14 . . . 4  |-  ( ph  ->  Q  e.  CC )
18 qcn 9685 . . . . 5  |-  ( B  e.  QQ  ->  B  e.  CC )
194, 18syl 14 . . . 4  |-  ( ph  ->  B  e.  CC )
20 0z 9314 . . . . . . 7  |-  0  e.  ZZ
21 zq 9677 . . . . . . 7  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
2220, 21ax-mp 5 . . . . . 6  |-  0  e.  QQ
23 qapne 9690 . . . . . 6  |-  ( ( B  e.  QQ  /\  0  e.  QQ )  ->  ( B #  0  <->  B  =/=  0 ) )
244, 22, 23sylancl 413 . . . . 5  |-  ( ph  ->  ( B #  0  <->  B  =/=  0 ) )
255, 24mpbird 167 . . . 4  |-  ( ph  ->  B #  0 )
2617, 19, 12, 25apdivmuld 8818 . . 3  |-  ( ph  ->  ( ( Q  /  B ) #  A  <->  ( B  x.  A ) #  Q ) )
2719, 12mulcomd 8027 . . . 4  |-  ( ph  ->  ( B  x.  A
)  =  ( A  x.  B ) )
2827breq1d 4035 . . 3  |-  ( ph  ->  ( ( B  x.  A ) #  Q  <->  ( A  x.  B ) #  Q ) )
2926, 28bitrd 188 . 2  |-  ( ph  ->  ( ( Q  /  B ) #  A  <->  ( A  x.  B ) #  Q ) )
3015, 29mpbid 147 1  |-  ( ph  ->  ( A  x.  B
) #  Q )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2160    =/= wne 2360   A.wral 2468   class class class wbr 4025  (class class class)co 5906   CCcc 7856   RRcr 7857   0cc0 7858    x. cmul 7863   # cap 8586    / cdiv 8677   ZZcz 9303   QQcq 9670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-cnex 7949  ax-resscn 7950  ax-1cn 7951  ax-1re 7952  ax-icn 7953  ax-addcl 7954  ax-addrcl 7955  ax-mulcl 7956  ax-mulrcl 7957  ax-addcom 7958  ax-mulcom 7959  ax-addass 7960  ax-mulass 7961  ax-distr 7962  ax-i2m1 7963  ax-0lt1 7964  ax-1rid 7965  ax-0id 7966  ax-rnegex 7967  ax-precex 7968  ax-cnre 7969  ax-pre-ltirr 7970  ax-pre-ltwlin 7971  ax-pre-lttrn 7972  ax-pre-apti 7973  ax-pre-ltadd 7974  ax-pre-mulgt0 7975  ax-pre-mulext 7976
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-int 3867  df-iun 3910  df-br 4026  df-opab 4087  df-mpt 4088  df-id 4318  df-po 4321  df-iso 4322  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-fv 5250  df-riota 5861  df-ov 5909  df-oprab 5910  df-mpo 5911  df-1st 6180  df-2nd 6181  df-pnf 8042  df-mnf 8043  df-xr 8044  df-ltxr 8045  df-le 8046  df-sub 8178  df-neg 8179  df-reap 8580  df-ap 8587  df-div 8678  df-inn 8969  df-n0 9227  df-z 9304  df-q 9671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator