ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  irrmulap Unicode version

Theorem irrmulap 9811
Description: The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9810. (Contributed by Jim Kingdon, 25-Aug-2025.)
Hypotheses
Ref Expression
irrmulap.a  |-  ( ph  ->  A  e.  RR )
irrmulap.aq  |-  ( ph  ->  A. q  e.  QQ  A #  q )
irrmulap.b  |-  ( ph  ->  B  e.  QQ )
irrmulap.b0  |-  ( ph  ->  B  =/=  0 )
irrmulap.q  |-  ( ph  ->  Q  e.  QQ )
Assertion
Ref Expression
irrmulap  |-  ( ph  ->  ( A  x.  B
) #  Q )
Distinct variable groups:    A, q    B, q    Q, q
Allowed substitution hint:    ph( q)

Proof of Theorem irrmulap
StepHypRef Expression
1 breq2 4066 . . . 4  |-  ( q  =  ( Q  /  B )  ->  ( A #  q  <->  A #  ( Q  /  B ) ) )
2 irrmulap.aq . . . 4  |-  ( ph  ->  A. q  e.  QQ  A #  q )
3 irrmulap.q . . . . 5  |-  ( ph  ->  Q  e.  QQ )
4 irrmulap.b . . . . 5  |-  ( ph  ->  B  e.  QQ )
5 irrmulap.b0 . . . . 5  |-  ( ph  ->  B  =/=  0 )
6 qdivcl 9806 . . . . 5  |-  ( ( Q  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( Q  /  B )  e.  QQ )
73, 4, 5, 6syl3anc 1252 . . . 4  |-  ( ph  ->  ( Q  /  B
)  e.  QQ )
81, 2, 7rspcdva 2892 . . 3  |-  ( ph  ->  A #  ( Q  /  B ) )
9 qcn 9797 . . . . 5  |-  ( ( Q  /  B )  e.  QQ  ->  ( Q  /  B )  e.  CC )
107, 9syl 14 . . . 4  |-  ( ph  ->  ( Q  /  B
)  e.  CC )
11 irrmulap.a . . . . 5  |-  ( ph  ->  A  e.  RR )
1211recnd 8143 . . . 4  |-  ( ph  ->  A  e.  CC )
13 apsym 8721 . . . 4  |-  ( ( ( Q  /  B
)  e.  CC  /\  A  e.  CC )  ->  ( ( Q  /  B ) #  A  <->  A #  ( Q  /  B ) ) )
1410, 12, 13syl2anc 411 . . 3  |-  ( ph  ->  ( ( Q  /  B ) #  A  <->  A #  ( Q  /  B ) ) )
158, 14mpbird 167 . 2  |-  ( ph  ->  ( Q  /  B
) #  A )
16 qcn 9797 . . . . 5  |-  ( Q  e.  QQ  ->  Q  e.  CC )
173, 16syl 14 . . . 4  |-  ( ph  ->  Q  e.  CC )
18 qcn 9797 . . . . 5  |-  ( B  e.  QQ  ->  B  e.  CC )
194, 18syl 14 . . . 4  |-  ( ph  ->  B  e.  CC )
20 0z 9425 . . . . . . 7  |-  0  e.  ZZ
21 zq 9789 . . . . . . 7  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
2220, 21ax-mp 5 . . . . . 6  |-  0  e.  QQ
23 qapne 9802 . . . . . 6  |-  ( ( B  e.  QQ  /\  0  e.  QQ )  ->  ( B #  0  <->  B  =/=  0 ) )
244, 22, 23sylancl 413 . . . . 5  |-  ( ph  ->  ( B #  0  <->  B  =/=  0 ) )
255, 24mpbird 167 . . . 4  |-  ( ph  ->  B #  0 )
2617, 19, 12, 25apdivmuld 8928 . . 3  |-  ( ph  ->  ( ( Q  /  B ) #  A  <->  ( B  x.  A ) #  Q ) )
2719, 12mulcomd 8136 . . . 4  |-  ( ph  ->  ( B  x.  A
)  =  ( A  x.  B ) )
2827breq1d 4072 . . 3  |-  ( ph  ->  ( ( B  x.  A ) #  Q  <->  ( A  x.  B ) #  Q ) )
2926, 28bitrd 188 . 2  |-  ( ph  ->  ( ( Q  /  B ) #  A  <->  ( A  x.  B ) #  Q ) )
3015, 29mpbid 147 1  |-  ( ph  ->  ( A  x.  B
) #  Q )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    e. wcel 2180    =/= wne 2380   A.wral 2488   class class class wbr 4062  (class class class)co 5974   CCcc 7965   RRcr 7966   0cc0 7967    x. cmul 7972   # cap 8696    / cdiv 8787   ZZcz 9414   QQcq 9782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-q 9783
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator