ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdivcl Unicode version

Theorem qdivcl 9806
Description: Closure of division of rationals. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
qdivcl  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )

Proof of Theorem qdivcl
StepHypRef Expression
1 qcn 9797 . . . 4  |-  ( A  e.  QQ  ->  A  e.  CC )
213ad2ant1 1023 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  A  e.  CC )
3 qcn 9797 . . . 4  |-  ( B  e.  QQ  ->  B  e.  CC )
433ad2ant2 1024 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B  e.  CC )
5 simp3 1004 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B  =/=  0 )
6 0z 9425 . . . . . . 7  |-  0  e.  ZZ
7 zq 9789 . . . . . . 7  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
86, 7ax-mp 5 . . . . . 6  |-  0  e.  QQ
9 qapne 9802 . . . . . 6  |-  ( ( B  e.  QQ  /\  0  e.  QQ )  ->  ( B #  0  <->  B  =/=  0 ) )
108, 9mpan2 425 . . . . 5  |-  ( B  e.  QQ  ->  ( B #  0  <->  B  =/=  0
) )
11103ad2ant2 1024 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( B #  0  <->  B  =/=  0
) )
125, 11mpbird 167 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B #  0 )
132, 4, 12divrecapd 8908 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
14 qreccl 9805 . . . 4  |-  ( ( B  e.  QQ  /\  B  =/=  0 )  -> 
( 1  /  B
)  e.  QQ )
15 qmulcl 9800 . . . 4  |-  ( ( A  e.  QQ  /\  ( 1  /  B
)  e.  QQ )  ->  ( A  x.  ( 1  /  B
) )  e.  QQ )
1614, 15sylan2 286 . . 3  |-  ( ( A  e.  QQ  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( A  x.  ( 1  /  B
) )  e.  QQ )
17163impb 1204 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  x.  ( 1  /  B ) )  e.  QQ )
1813, 17eqeltrd 2286 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 983    e. wcel 2180    =/= wne 2380   class class class wbr 4062  (class class class)co 5974   CCcc 7965   0cc0 7967   1c1 7968    x. cmul 7972   # cap 8696    / cdiv 8787   ZZcz 9414   QQcq 9782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501  ax-setind 4606  ax-cnex 8058  ax-resscn 8059  ax-1cn 8060  ax-1re 8061  ax-icn 8062  ax-addcl 8063  ax-addrcl 8064  ax-mulcl 8065  ax-mulrcl 8066  ax-addcom 8067  ax-mulcom 8068  ax-addass 8069  ax-mulass 8070  ax-distr 8071  ax-i2m1 8072  ax-0lt1 8073  ax-1rid 8074  ax-0id 8075  ax-rnegex 8076  ax-precex 8077  ax-cnre 8078  ax-pre-ltirr 8079  ax-pre-ltwlin 8080  ax-pre-lttrn 8081  ax-pre-apti 8082  ax-pre-ltadd 8083  ax-pre-mulgt0 8084  ax-pre-mulext 8085
This theorem depends on definitions:  df-bi 117  df-3or 984  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-nel 2476  df-ral 2493  df-rex 2494  df-reu 2495  df-rmo 2496  df-rab 2497  df-v 2781  df-sbc 3009  df-csb 3105  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-int 3903  df-iun 3946  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-po 4364  df-iso 4365  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-ima 4709  df-iota 5254  df-fun 5296  df-fn 5297  df-f 5298  df-fv 5302  df-riota 5927  df-ov 5977  df-oprab 5978  df-mpo 5979  df-1st 6256  df-2nd 6257  df-pnf 8151  df-mnf 8152  df-xr 8153  df-ltxr 8154  df-le 8155  df-sub 8287  df-neg 8288  df-reap 8690  df-ap 8697  df-div 8788  df-inn 9079  df-n0 9338  df-z 9415  df-q 9783
This theorem is referenced by:  irrmul  9810  irrmulap  9811  flqdiv  10510  modqval  10513  modqvalr  10514  modqcl  10515  flqpmodeq  10516  modq0  10518  modqge0  10521  modqlt  10522  modqdiffl  10524  modqdifz  10525  modqmulnn  10531  modqvalp1  10532  modqid  10538  modqcyc  10548  modqadd1  10550  modqmuladd  10555  modqmuladdnn0  10557  modqmul1  10566  modqdi  10581  modqsubdir  10582  fldivndvdslt  12414  pcqdiv  12796  apdiff  16327
  Copyright terms: Public domain W3C validator