ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdivcl Unicode version

Theorem qdivcl 9097
Description: Closure of division of rationals. (Contributed by NM, 3-Aug-2004.)
Assertion
Ref Expression
qdivcl  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )

Proof of Theorem qdivcl
StepHypRef Expression
1 qcn 9088 . . . 4  |-  ( A  e.  QQ  ->  A  e.  CC )
213ad2ant1 964 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  A  e.  CC )
3 qcn 9088 . . . 4  |-  ( B  e.  QQ  ->  B  e.  CC )
433ad2ant2 965 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B  e.  CC )
5 simp3 945 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B  =/=  0 )
6 0z 8731 . . . . . . 7  |-  0  e.  ZZ
7 zq 9080 . . . . . . 7  |-  ( 0  e.  ZZ  ->  0  e.  QQ )
86, 7ax-mp 7 . . . . . 6  |-  0  e.  QQ
9 qapne 9093 . . . . . 6  |-  ( ( B  e.  QQ  /\  0  e.  QQ )  ->  ( B #  0  <->  B  =/=  0 ) )
108, 9mpan2 416 . . . . 5  |-  ( B  e.  QQ  ->  ( B #  0  <->  B  =/=  0
) )
11103ad2ant2 965 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( B #  0  <->  B  =/=  0
) )
125, 11mpbird 165 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  B #  0 )
132, 4, 12divrecapd 8233 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  =  ( A  x.  (
1  /  B ) ) )
14 qreccl 9096 . . . 4  |-  ( ( B  e.  QQ  /\  B  =/=  0 )  -> 
( 1  /  B
)  e.  QQ )
15 qmulcl 9091 . . . 4  |-  ( ( A  e.  QQ  /\  ( 1  /  B
)  e.  QQ )  ->  ( A  x.  ( 1  /  B
) )  e.  QQ )
1614, 15sylan2 280 . . 3  |-  ( ( A  e.  QQ  /\  ( B  e.  QQ  /\  B  =/=  0 ) )  ->  ( A  x.  ( 1  /  B
) )  e.  QQ )
17163impb 1139 . 2  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  x.  ( 1  /  B ) )  e.  QQ )
1813, 17eqeltrd 2164 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  /  B )  e.  QQ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 924    e. wcel 1438    =/= wne 2255   class class class wbr 3837  (class class class)co 5634   CCcc 7327   0cc0 7329   1c1 7330    x. cmul 7334   # cap 8034    / cdiv 8113   ZZcz 8720   QQcq 9073
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-sep 3949  ax-pow 4001  ax-pr 4027  ax-un 4251  ax-setind 4343  ax-cnex 7415  ax-resscn 7416  ax-1cn 7417  ax-1re 7418  ax-icn 7419  ax-addcl 7420  ax-addrcl 7421  ax-mulcl 7422  ax-mulrcl 7423  ax-addcom 7424  ax-mulcom 7425  ax-addass 7426  ax-mulass 7427  ax-distr 7428  ax-i2m1 7429  ax-0lt1 7430  ax-1rid 7431  ax-0id 7432  ax-rnegex 7433  ax-precex 7434  ax-cnre 7435  ax-pre-ltirr 7436  ax-pre-ltwlin 7437  ax-pre-lttrn 7438  ax-pre-apti 7439  ax-pre-ltadd 7440  ax-pre-mulgt0 7441  ax-pre-mulext 7442
This theorem depends on definitions:  df-bi 115  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2839  df-csb 2932  df-dif 2999  df-un 3001  df-in 3003  df-ss 3010  df-pw 3427  df-sn 3447  df-pr 3448  df-op 3450  df-uni 3649  df-int 3684  df-iun 3727  df-br 3838  df-opab 3892  df-mpt 3893  df-id 4111  df-po 4114  df-iso 4115  df-xp 4434  df-rel 4435  df-cnv 4436  df-co 4437  df-dm 4438  df-rn 4439  df-res 4440  df-ima 4441  df-iota 4967  df-fun 5004  df-fn 5005  df-f 5006  df-fv 5010  df-riota 5590  df-ov 5637  df-oprab 5638  df-mpt2 5639  df-1st 5893  df-2nd 5894  df-pnf 7503  df-mnf 7504  df-xr 7505  df-ltxr 7506  df-le 7507  df-sub 7634  df-neg 7635  df-reap 8028  df-ap 8035  df-div 8114  df-inn 8395  df-n0 8644  df-z 8721  df-q 9074
This theorem is referenced by:  irrmul  9101  flqdiv  9693  modqval  9696  modqvalr  9697  modqcl  9698  flqpmodeq  9699  modq0  9701  modqge0  9704  modqlt  9705  modqdiffl  9707  modqdifz  9708  modqmulnn  9714  modqvalp1  9715  modqid  9721  modqcyc  9731  modqadd1  9733  modqmuladd  9738  modqmuladdnn0  9740  modqmul1  9749  modqdi  9764  modqsubdir  9765  fldivndvdslt  11028
  Copyright terms: Public domain W3C validator