| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > irrmulap | GIF version | ||
| Description: The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9810. (Contributed by Jim Kingdon, 25-Aug-2025.) |
| Ref | Expression |
|---|---|
| irrmulap.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| irrmulap.aq | ⊢ (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞) |
| irrmulap.b | ⊢ (𝜑 → 𝐵 ∈ ℚ) |
| irrmulap.b0 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| irrmulap.q | ⊢ (𝜑 → 𝑄 ∈ ℚ) |
| Ref | Expression |
|---|---|
| irrmulap | ⊢ (𝜑 → (𝐴 · 𝐵) # 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4066 | . . . 4 ⊢ (𝑞 = (𝑄 / 𝐵) → (𝐴 # 𝑞 ↔ 𝐴 # (𝑄 / 𝐵))) | |
| 2 | irrmulap.aq | . . . 4 ⊢ (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞) | |
| 3 | irrmulap.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℚ) | |
| 4 | irrmulap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℚ) | |
| 5 | irrmulap.b0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 6 | qdivcl 9806 | . . . . 5 ⊢ ((𝑄 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝑄 / 𝐵) ∈ ℚ) | |
| 7 | 3, 4, 5, 6 | syl3anc 1252 | . . . 4 ⊢ (𝜑 → (𝑄 / 𝐵) ∈ ℚ) |
| 8 | 1, 2, 7 | rspcdva 2892 | . . 3 ⊢ (𝜑 → 𝐴 # (𝑄 / 𝐵)) |
| 9 | qcn 9797 | . . . . 5 ⊢ ((𝑄 / 𝐵) ∈ ℚ → (𝑄 / 𝐵) ∈ ℂ) | |
| 10 | 7, 9 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑄 / 𝐵) ∈ ℂ) |
| 11 | irrmulap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 11 | recnd 8143 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | apsym 8721 | . . . 4 ⊢ (((𝑄 / 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑄 / 𝐵) # 𝐴 ↔ 𝐴 # (𝑄 / 𝐵))) | |
| 14 | 10, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ 𝐴 # (𝑄 / 𝐵))) |
| 15 | 8, 14 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑄 / 𝐵) # 𝐴) |
| 16 | qcn 9797 | . . . . 5 ⊢ (𝑄 ∈ ℚ → 𝑄 ∈ ℂ) | |
| 17 | 3, 16 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 18 | qcn 9797 | . . . . 5 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
| 19 | 4, 18 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 20 | 0z 9425 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 21 | zq 9789 | . . . . . . 7 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
| 22 | 20, 21 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ ℚ |
| 23 | qapne 9802 | . . . . . 6 ⊢ ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐵 # 0 ↔ 𝐵 ≠ 0)) | |
| 24 | 4, 22, 23 | sylancl 413 | . . . . 5 ⊢ (𝜑 → (𝐵 # 0 ↔ 𝐵 ≠ 0)) |
| 25 | 5, 24 | mpbird 167 | . . . 4 ⊢ (𝜑 → 𝐵 # 0) |
| 26 | 17, 19, 12, 25 | apdivmuld 8928 | . . 3 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ (𝐵 · 𝐴) # 𝑄)) |
| 27 | 19, 12 | mulcomd 8136 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝐴) = (𝐴 · 𝐵)) |
| 28 | 27 | breq1d 4072 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐴) # 𝑄 ↔ (𝐴 · 𝐵) # 𝑄)) |
| 29 | 26, 28 | bitrd 188 | . 2 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ (𝐴 · 𝐵) # 𝑄)) |
| 30 | 15, 29 | mpbid 147 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) # 𝑄) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2180 ≠ wne 2380 ∀wral 2488 class class class wbr 4062 (class class class)co 5974 ℂcc 7965 ℝcr 7966 0cc0 7967 · cmul 7972 # cap 8696 / cdiv 8787 ℤcz 9414 ℚcq 9782 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-mulrcl 8066 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-0lt1 8073 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-precex 8077 ax-cnre 8078 ax-pre-ltirr 8079 ax-pre-ltwlin 8080 ax-pre-lttrn 8081 ax-pre-apti 8082 ax-pre-ltadd 8083 ax-pre-mulgt0 8084 ax-pre-mulext 8085 |
| This theorem depends on definitions: df-bi 117 df-3or 984 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-nel 2476 df-ral 2493 df-rex 2494 df-reu 2495 df-rmo 2496 df-rab 2497 df-v 2781 df-sbc 3009 df-csb 3105 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-iun 3946 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-po 4364 df-iso 4365 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-ima 4709 df-iota 5254 df-fun 5296 df-fn 5297 df-f 5298 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-1st 6256 df-2nd 6257 df-pnf 8151 df-mnf 8152 df-xr 8153 df-ltxr 8154 df-le 8155 df-sub 8287 df-neg 8288 df-reap 8690 df-ap 8697 df-div 8788 df-inn 9079 df-n0 9338 df-z 9415 df-q 9783 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |