| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > irrmulap | GIF version | ||
| Description: The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9775. (Contributed by Jim Kingdon, 25-Aug-2025.) |
| Ref | Expression |
|---|---|
| irrmulap.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| irrmulap.aq | ⊢ (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞) |
| irrmulap.b | ⊢ (𝜑 → 𝐵 ∈ ℚ) |
| irrmulap.b0 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| irrmulap.q | ⊢ (𝜑 → 𝑄 ∈ ℚ) |
| Ref | Expression |
|---|---|
| irrmulap | ⊢ (𝜑 → (𝐴 · 𝐵) # 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4051 | . . . 4 ⊢ (𝑞 = (𝑄 / 𝐵) → (𝐴 # 𝑞 ↔ 𝐴 # (𝑄 / 𝐵))) | |
| 2 | irrmulap.aq | . . . 4 ⊢ (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞) | |
| 3 | irrmulap.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℚ) | |
| 4 | irrmulap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℚ) | |
| 5 | irrmulap.b0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 6 | qdivcl 9771 | . . . . 5 ⊢ ((𝑄 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝑄 / 𝐵) ∈ ℚ) | |
| 7 | 3, 4, 5, 6 | syl3anc 1250 | . . . 4 ⊢ (𝜑 → (𝑄 / 𝐵) ∈ ℚ) |
| 8 | 1, 2, 7 | rspcdva 2883 | . . 3 ⊢ (𝜑 → 𝐴 # (𝑄 / 𝐵)) |
| 9 | qcn 9762 | . . . . 5 ⊢ ((𝑄 / 𝐵) ∈ ℚ → (𝑄 / 𝐵) ∈ ℂ) | |
| 10 | 7, 9 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑄 / 𝐵) ∈ ℂ) |
| 11 | irrmulap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 11 | recnd 8108 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | apsym 8686 | . . . 4 ⊢ (((𝑄 / 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑄 / 𝐵) # 𝐴 ↔ 𝐴 # (𝑄 / 𝐵))) | |
| 14 | 10, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ 𝐴 # (𝑄 / 𝐵))) |
| 15 | 8, 14 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑄 / 𝐵) # 𝐴) |
| 16 | qcn 9762 | . . . . 5 ⊢ (𝑄 ∈ ℚ → 𝑄 ∈ ℂ) | |
| 17 | 3, 16 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 18 | qcn 9762 | . . . . 5 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
| 19 | 4, 18 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 20 | 0z 9390 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 21 | zq 9754 | . . . . . . 7 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
| 22 | 20, 21 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ ℚ |
| 23 | qapne 9767 | . . . . . 6 ⊢ ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐵 # 0 ↔ 𝐵 ≠ 0)) | |
| 24 | 4, 22, 23 | sylancl 413 | . . . . 5 ⊢ (𝜑 → (𝐵 # 0 ↔ 𝐵 ≠ 0)) |
| 25 | 5, 24 | mpbird 167 | . . . 4 ⊢ (𝜑 → 𝐵 # 0) |
| 26 | 17, 19, 12, 25 | apdivmuld 8893 | . . 3 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ (𝐵 · 𝐴) # 𝑄)) |
| 27 | 19, 12 | mulcomd 8101 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝐴) = (𝐴 · 𝐵)) |
| 28 | 27 | breq1d 4057 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐴) # 𝑄 ↔ (𝐴 · 𝐵) # 𝑄)) |
| 29 | 26, 28 | bitrd 188 | . 2 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ (𝐴 · 𝐵) # 𝑄)) |
| 30 | 15, 29 | mpbid 147 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) # 𝑄) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2177 ≠ wne 2377 ∀wral 2485 class class class wbr 4047 (class class class)co 5951 ℂcc 7930 ℝcr 7931 0cc0 7932 · cmul 7937 # cap 8661 / cdiv 8752 ℤcz 9379 ℚcq 9747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4166 ax-pow 4222 ax-pr 4257 ax-un 4484 ax-setind 4589 ax-cnex 8023 ax-resscn 8024 ax-1cn 8025 ax-1re 8026 ax-icn 8027 ax-addcl 8028 ax-addrcl 8029 ax-mulcl 8030 ax-mulrcl 8031 ax-addcom 8032 ax-mulcom 8033 ax-addass 8034 ax-mulass 8035 ax-distr 8036 ax-i2m1 8037 ax-0lt1 8038 ax-1rid 8039 ax-0id 8040 ax-rnegex 8041 ax-precex 8042 ax-cnre 8043 ax-pre-ltirr 8044 ax-pre-ltwlin 8045 ax-pre-lttrn 8046 ax-pre-apti 8047 ax-pre-ltadd 8048 ax-pre-mulgt0 8049 ax-pre-mulext 8050 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3000 df-csb 3095 df-dif 3169 df-un 3171 df-in 3173 df-ss 3180 df-pw 3619 df-sn 3640 df-pr 3641 df-op 3643 df-uni 3853 df-int 3888 df-iun 3931 df-br 4048 df-opab 4110 df-mpt 4111 df-id 4344 df-po 4347 df-iso 4348 df-xp 4685 df-rel 4686 df-cnv 4687 df-co 4688 df-dm 4689 df-rn 4690 df-res 4691 df-ima 4692 df-iota 5237 df-fun 5278 df-fn 5279 df-f 5280 df-fv 5284 df-riota 5906 df-ov 5954 df-oprab 5955 df-mpo 5956 df-1st 6233 df-2nd 6234 df-pnf 8116 df-mnf 8117 df-xr 8118 df-ltxr 8119 df-le 8120 df-sub 8252 df-neg 8253 df-reap 8655 df-ap 8662 df-div 8753 df-inn 9044 df-n0 9303 df-z 9380 df-q 9748 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |