![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > irrmulap | GIF version |
Description: The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9715. (Contributed by Jim Kingdon, 25-Aug-2025.) |
Ref | Expression |
---|---|
irrmulap.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
irrmulap.aq | ⊢ (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞) |
irrmulap.b | ⊢ (𝜑 → 𝐵 ∈ ℚ) |
irrmulap.b0 | ⊢ (𝜑 → 𝐵 ≠ 0) |
irrmulap.q | ⊢ (𝜑 → 𝑄 ∈ ℚ) |
Ref | Expression |
---|---|
irrmulap | ⊢ (𝜑 → (𝐴 · 𝐵) # 𝑄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4034 | . . . 4 ⊢ (𝑞 = (𝑄 / 𝐵) → (𝐴 # 𝑞 ↔ 𝐴 # (𝑄 / 𝐵))) | |
2 | irrmulap.aq | . . . 4 ⊢ (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞) | |
3 | irrmulap.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℚ) | |
4 | irrmulap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℚ) | |
5 | irrmulap.b0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
6 | qdivcl 9711 | . . . . 5 ⊢ ((𝑄 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝑄 / 𝐵) ∈ ℚ) | |
7 | 3, 4, 5, 6 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → (𝑄 / 𝐵) ∈ ℚ) |
8 | 1, 2, 7 | rspcdva 2870 | . . 3 ⊢ (𝜑 → 𝐴 # (𝑄 / 𝐵)) |
9 | qcn 9702 | . . . . 5 ⊢ ((𝑄 / 𝐵) ∈ ℚ → (𝑄 / 𝐵) ∈ ℂ) | |
10 | 7, 9 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑄 / 𝐵) ∈ ℂ) |
11 | irrmulap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
12 | 11 | recnd 8050 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
13 | apsym 8627 | . . . 4 ⊢ (((𝑄 / 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑄 / 𝐵) # 𝐴 ↔ 𝐴 # (𝑄 / 𝐵))) | |
14 | 10, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ 𝐴 # (𝑄 / 𝐵))) |
15 | 8, 14 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑄 / 𝐵) # 𝐴) |
16 | qcn 9702 | . . . . 5 ⊢ (𝑄 ∈ ℚ → 𝑄 ∈ ℂ) | |
17 | 3, 16 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
18 | qcn 9702 | . . . . 5 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
19 | 4, 18 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
20 | 0z 9331 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
21 | zq 9694 | . . . . . . 7 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
22 | 20, 21 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ ℚ |
23 | qapne 9707 | . . . . . 6 ⊢ ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐵 # 0 ↔ 𝐵 ≠ 0)) | |
24 | 4, 22, 23 | sylancl 413 | . . . . 5 ⊢ (𝜑 → (𝐵 # 0 ↔ 𝐵 ≠ 0)) |
25 | 5, 24 | mpbird 167 | . . . 4 ⊢ (𝜑 → 𝐵 # 0) |
26 | 17, 19, 12, 25 | apdivmuld 8834 | . . 3 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ (𝐵 · 𝐴) # 𝑄)) |
27 | 19, 12 | mulcomd 8043 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝐴) = (𝐴 · 𝐵)) |
28 | 27 | breq1d 4040 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐴) # 𝑄 ↔ (𝐴 · 𝐵) # 𝑄)) |
29 | 26, 28 | bitrd 188 | . 2 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ (𝐴 · 𝐵) # 𝑄)) |
30 | 15, 29 | mpbid 147 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) # 𝑄) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2164 ≠ wne 2364 ∀wral 2472 class class class wbr 4030 (class class class)co 5919 ℂcc 7872 ℝcr 7873 0cc0 7874 · cmul 7879 # cap 8602 / cdiv 8693 ℤcz 9320 ℚcq 9687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 ax-setind 4570 ax-cnex 7965 ax-resscn 7966 ax-1cn 7967 ax-1re 7968 ax-icn 7969 ax-addcl 7970 ax-addrcl 7971 ax-mulcl 7972 ax-mulrcl 7973 ax-addcom 7974 ax-mulcom 7975 ax-addass 7976 ax-mulass 7977 ax-distr 7978 ax-i2m1 7979 ax-0lt1 7980 ax-1rid 7981 ax-0id 7982 ax-rnegex 7983 ax-precex 7984 ax-cnre 7985 ax-pre-ltirr 7986 ax-pre-ltwlin 7987 ax-pre-lttrn 7988 ax-pre-apti 7989 ax-pre-ltadd 7990 ax-pre-mulgt0 7991 ax-pre-mulext 7992 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2987 df-csb 3082 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-int 3872 df-iun 3915 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-po 4328 df-iso 4329 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-res 4672 df-ima 4673 df-iota 5216 df-fun 5257 df-fn 5258 df-f 5259 df-fv 5263 df-riota 5874 df-ov 5922 df-oprab 5923 df-mpo 5924 df-1st 6195 df-2nd 6196 df-pnf 8058 df-mnf 8059 df-xr 8060 df-ltxr 8061 df-le 8062 df-sub 8194 df-neg 8195 df-reap 8596 df-ap 8603 df-div 8694 df-inn 8985 df-n0 9244 df-z 9321 df-q 9688 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |