ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  irrmulap GIF version

Theorem irrmulap 9699
Description: The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9698. (Contributed by Jim Kingdon, 25-Aug-2025.)
Hypotheses
Ref Expression
irrmulap.a (𝜑𝐴 ∈ ℝ)
irrmulap.aq (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞)
irrmulap.b (𝜑𝐵 ∈ ℚ)
irrmulap.b0 (𝜑𝐵 ≠ 0)
irrmulap.q (𝜑𝑄 ∈ ℚ)
Assertion
Ref Expression
irrmulap (𝜑 → (𝐴 · 𝐵) # 𝑄)
Distinct variable groups:   𝐴,𝑞   𝐵,𝑞   𝑄,𝑞
Allowed substitution hint:   𝜑(𝑞)

Proof of Theorem irrmulap
StepHypRef Expression
1 breq2 4029 . . . 4 (𝑞 = (𝑄 / 𝐵) → (𝐴 # 𝑞𝐴 # (𝑄 / 𝐵)))
2 irrmulap.aq . . . 4 (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞)
3 irrmulap.q . . . . 5 (𝜑𝑄 ∈ ℚ)
4 irrmulap.b . . . . 5 (𝜑𝐵 ∈ ℚ)
5 irrmulap.b0 . . . . 5 (𝜑𝐵 ≠ 0)
6 qdivcl 9694 . . . . 5 ((𝑄 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝑄 / 𝐵) ∈ ℚ)
73, 4, 5, 6syl3anc 1249 . . . 4 (𝜑 → (𝑄 / 𝐵) ∈ ℚ)
81, 2, 7rspcdva 2865 . . 3 (𝜑𝐴 # (𝑄 / 𝐵))
9 qcn 9685 . . . . 5 ((𝑄 / 𝐵) ∈ ℚ → (𝑄 / 𝐵) ∈ ℂ)
107, 9syl 14 . . . 4 (𝜑 → (𝑄 / 𝐵) ∈ ℂ)
11 irrmulap.a . . . . 5 (𝜑𝐴 ∈ ℝ)
1211recnd 8034 . . . 4 (𝜑𝐴 ∈ ℂ)
13 apsym 8611 . . . 4 (((𝑄 / 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑄 / 𝐵) # 𝐴𝐴 # (𝑄 / 𝐵)))
1410, 12, 13syl2anc 411 . . 3 (𝜑 → ((𝑄 / 𝐵) # 𝐴𝐴 # (𝑄 / 𝐵)))
158, 14mpbird 167 . 2 (𝜑 → (𝑄 / 𝐵) # 𝐴)
16 qcn 9685 . . . . 5 (𝑄 ∈ ℚ → 𝑄 ∈ ℂ)
173, 16syl 14 . . . 4 (𝜑𝑄 ∈ ℂ)
18 qcn 9685 . . . . 5 (𝐵 ∈ ℚ → 𝐵 ∈ ℂ)
194, 18syl 14 . . . 4 (𝜑𝐵 ∈ ℂ)
20 0z 9314 . . . . . . 7 0 ∈ ℤ
21 zq 9677 . . . . . . 7 (0 ∈ ℤ → 0 ∈ ℚ)
2220, 21ax-mp 5 . . . . . 6 0 ∈ ℚ
23 qapne 9690 . . . . . 6 ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐵 # 0 ↔ 𝐵 ≠ 0))
244, 22, 23sylancl 413 . . . . 5 (𝜑 → (𝐵 # 0 ↔ 𝐵 ≠ 0))
255, 24mpbird 167 . . . 4 (𝜑𝐵 # 0)
2617, 19, 12, 25apdivmuld 8818 . . 3 (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ (𝐵 · 𝐴) # 𝑄))
2719, 12mulcomd 8027 . . . 4 (𝜑 → (𝐵 · 𝐴) = (𝐴 · 𝐵))
2827breq1d 4035 . . 3 (𝜑 → ((𝐵 · 𝐴) # 𝑄 ↔ (𝐴 · 𝐵) # 𝑄))
2926, 28bitrd 188 . 2 (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ (𝐴 · 𝐵) # 𝑄))
3015, 29mpbid 147 1 (𝜑 → (𝐴 · 𝐵) # 𝑄)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  wcel 2160  wne 2360  wral 2468   class class class wbr 4025  (class class class)co 5906  cc 7856  cr 7857  0cc0 7858   · cmul 7863   # cap 8586   / cdiv 8677  cz 9303  cq 9670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4143  ax-pow 4199  ax-pr 4234  ax-un 4458  ax-setind 4561  ax-cnex 7949  ax-resscn 7950  ax-1cn 7951  ax-1re 7952  ax-icn 7953  ax-addcl 7954  ax-addrcl 7955  ax-mulcl 7956  ax-mulrcl 7957  ax-addcom 7958  ax-mulcom 7959  ax-addass 7960  ax-mulass 7961  ax-distr 7962  ax-i2m1 7963  ax-0lt1 7964  ax-1rid 7965  ax-0id 7966  ax-rnegex 7967  ax-precex 7968  ax-cnre 7969  ax-pre-ltirr 7970  ax-pre-ltwlin 7971  ax-pre-lttrn 7972  ax-pre-apti 7973  ax-pre-ltadd 7974  ax-pre-mulgt0 7975  ax-pre-mulext 7976
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2758  df-sbc 2982  df-csb 3077  df-dif 3151  df-un 3153  df-in 3155  df-ss 3162  df-pw 3599  df-sn 3620  df-pr 3621  df-op 3623  df-uni 3832  df-int 3867  df-iun 3910  df-br 4026  df-opab 4087  df-mpt 4088  df-id 4318  df-po 4321  df-iso 4322  df-xp 4657  df-rel 4658  df-cnv 4659  df-co 4660  df-dm 4661  df-rn 4662  df-res 4663  df-ima 4664  df-iota 5203  df-fun 5244  df-fn 5245  df-f 5246  df-fv 5250  df-riota 5861  df-ov 5909  df-oprab 5910  df-mpo 5911  df-1st 6180  df-2nd 6181  df-pnf 8042  df-mnf 8043  df-xr 8044  df-ltxr 8045  df-le 8046  df-sub 8178  df-neg 8179  df-reap 8580  df-ap 8587  df-div 8678  df-inn 8969  df-n0 9227  df-z 9304  df-q 9671
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator