| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > irrmulap | GIF version | ||
| Description: The product of an irrational with a nonzero rational is irrational. By irrational we mean apart from any rational number. For a similar theorem with not rational in place of irrational, see irrmul 9738. (Contributed by Jim Kingdon, 25-Aug-2025.) |
| Ref | Expression |
|---|---|
| irrmulap.a | ⊢ (𝜑 → 𝐴 ∈ ℝ) |
| irrmulap.aq | ⊢ (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞) |
| irrmulap.b | ⊢ (𝜑 → 𝐵 ∈ ℚ) |
| irrmulap.b0 | ⊢ (𝜑 → 𝐵 ≠ 0) |
| irrmulap.q | ⊢ (𝜑 → 𝑄 ∈ ℚ) |
| Ref | Expression |
|---|---|
| irrmulap | ⊢ (𝜑 → (𝐴 · 𝐵) # 𝑄) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4038 | . . . 4 ⊢ (𝑞 = (𝑄 / 𝐵) → (𝐴 # 𝑞 ↔ 𝐴 # (𝑄 / 𝐵))) | |
| 2 | irrmulap.aq | . . . 4 ⊢ (𝜑 → ∀𝑞 ∈ ℚ 𝐴 # 𝑞) | |
| 3 | irrmulap.q | . . . . 5 ⊢ (𝜑 → 𝑄 ∈ ℚ) | |
| 4 | irrmulap.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℚ) | |
| 5 | irrmulap.b0 | . . . . 5 ⊢ (𝜑 → 𝐵 ≠ 0) | |
| 6 | qdivcl 9734 | . . . . 5 ⊢ ((𝑄 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0) → (𝑄 / 𝐵) ∈ ℚ) | |
| 7 | 3, 4, 5, 6 | syl3anc 1249 | . . . 4 ⊢ (𝜑 → (𝑄 / 𝐵) ∈ ℚ) |
| 8 | 1, 2, 7 | rspcdva 2873 | . . 3 ⊢ (𝜑 → 𝐴 # (𝑄 / 𝐵)) |
| 9 | qcn 9725 | . . . . 5 ⊢ ((𝑄 / 𝐵) ∈ ℚ → (𝑄 / 𝐵) ∈ ℂ) | |
| 10 | 7, 9 | syl 14 | . . . 4 ⊢ (𝜑 → (𝑄 / 𝐵) ∈ ℂ) |
| 11 | irrmulap.a | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ ℝ) | |
| 12 | 11 | recnd 8072 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 13 | apsym 8650 | . . . 4 ⊢ (((𝑄 / 𝐵) ∈ ℂ ∧ 𝐴 ∈ ℂ) → ((𝑄 / 𝐵) # 𝐴 ↔ 𝐴 # (𝑄 / 𝐵))) | |
| 14 | 10, 12, 13 | syl2anc 411 | . . 3 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ 𝐴 # (𝑄 / 𝐵))) |
| 15 | 8, 14 | mpbird 167 | . 2 ⊢ (𝜑 → (𝑄 / 𝐵) # 𝐴) |
| 16 | qcn 9725 | . . . . 5 ⊢ (𝑄 ∈ ℚ → 𝑄 ∈ ℂ) | |
| 17 | 3, 16 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ ℂ) |
| 18 | qcn 9725 | . . . . 5 ⊢ (𝐵 ∈ ℚ → 𝐵 ∈ ℂ) | |
| 19 | 4, 18 | syl 14 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 20 | 0z 9354 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 21 | zq 9717 | . . . . . . 7 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
| 22 | 20, 21 | ax-mp 5 | . . . . . 6 ⊢ 0 ∈ ℚ |
| 23 | qapne 9730 | . . . . . 6 ⊢ ((𝐵 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐵 # 0 ↔ 𝐵 ≠ 0)) | |
| 24 | 4, 22, 23 | sylancl 413 | . . . . 5 ⊢ (𝜑 → (𝐵 # 0 ↔ 𝐵 ≠ 0)) |
| 25 | 5, 24 | mpbird 167 | . . . 4 ⊢ (𝜑 → 𝐵 # 0) |
| 26 | 17, 19, 12, 25 | apdivmuld 8857 | . . 3 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ (𝐵 · 𝐴) # 𝑄)) |
| 27 | 19, 12 | mulcomd 8065 | . . . 4 ⊢ (𝜑 → (𝐵 · 𝐴) = (𝐴 · 𝐵)) |
| 28 | 27 | breq1d 4044 | . . 3 ⊢ (𝜑 → ((𝐵 · 𝐴) # 𝑄 ↔ (𝐴 · 𝐵) # 𝑄)) |
| 29 | 26, 28 | bitrd 188 | . 2 ⊢ (𝜑 → ((𝑄 / 𝐵) # 𝐴 ↔ (𝐴 · 𝐵) # 𝑄)) |
| 30 | 15, 29 | mpbid 147 | 1 ⊢ (𝜑 → (𝐴 · 𝐵) # 𝑄) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∈ wcel 2167 ≠ wne 2367 ∀wral 2475 class class class wbr 4034 (class class class)co 5925 ℂcc 7894 ℝcr 7895 0cc0 7896 · cmul 7901 # cap 8625 / cdiv 8716 ℤcz 9343 ℚcq 9710 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-mulrcl 7995 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-precex 8006 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 ax-pre-mulgt0 8013 ax-pre-mulext 8014 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-po 4332 df-iso 4333 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-reap 8619 df-ap 8626 df-div 8717 df-inn 9008 df-n0 9267 df-z 9344 df-q 9711 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |