ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnbasval Unicode version

Theorem ixpsnbasval 14303
Description: The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnbasval  |-  ( ( R  e.  V  /\  X  e.  W )  -> 
X_ x  e.  { X }  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  (
Base `  R )
) } )
Distinct variable groups:    R, f, x   
f, V    f, W    f, X, x
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem ixpsnbasval
StepHypRef Expression
1 ixpsnval 6801 . . 3  |-  ( X  e.  W  ->  X_ x  e.  { X }  ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) )  =  { f  |  ( f  Fn 
{ X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) ) ) } )
21adantl 277 . 2  |-  ( ( R  e.  V  /\  X  e.  W )  -> 
X_ x  e.  { X }  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) ) ) } )
3 rlmfn 14290 . . . . . . . . . . . 12  |- ringLMod  Fn  _V
4 elex 2785 . . . . . . . . . . . 12  |-  ( R  e.  V  ->  R  e.  _V )
5 funfvex 5606 . . . . . . . . . . . . 13  |-  ( ( Fun ringLMod  /\  R  e.  dom ringLMod )  ->  (ringLMod `  R )  e.  _V )
65funfni 5385 . . . . . . . . . . . 12  |-  ( (ringLMod  Fn  _V  /\  R  e. 
_V )  ->  (ringLMod `  R )  e.  _V )
73, 4, 6sylancr 414 . . . . . . . . . . 11  |-  ( R  e.  V  ->  (ringLMod `  R )  e.  _V )
87anim1ci 341 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( X  e.  W  /\  (ringLMod `  R )  e.  _V ) )
9 xpsng 5768 . . . . . . . . . 10  |-  ( ( X  e.  W  /\  (ringLMod `  R )  e. 
_V )  ->  ( { X }  X.  {
(ringLMod `  R ) } )  =  { <. X ,  (ringLMod `  R
) >. } )
108, 9syl 14 . . . . . . . . 9  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( { X }  X.  { (ringLMod `  R
) } )  =  { <. X ,  (ringLMod `  R ) >. } )
1110fveq1d 5591 . . . . . . . 8  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( { X }  X.  { (ringLMod `  R
) } ) `  X )  =  ( { <. X ,  (ringLMod `  R ) >. } `  X ) )
12 fvsng 5793 . . . . . . . . 9  |-  ( ( X  e.  W  /\  (ringLMod `  R )  e. 
_V )  ->  ( { <. X ,  (ringLMod `  R ) >. } `  X )  =  (ringLMod `  R ) )
138, 12syl 14 . . . . . . . 8  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( { <. X , 
(ringLMod `  R ) >. } `  X )  =  (ringLMod `  R )
)
1411, 13eqtrd 2239 . . . . . . 7  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( { X }  X.  { (ringLMod `  R
) } ) `  X )  =  (ringLMod `  R ) )
1514fveq2d 5593 . . . . . 6  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  X ) )  =  ( Base `  (ringLMod `  R ) ) )
16 csbfv2g 5628 . . . . . . . 8  |-  ( X  e.  W  ->  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  [_ X  /  x ]_ ( ( { X }  X.  { (ringLMod `  R ) } ) `  x
) ) )
17 csbfvg 5629 . . . . . . . . 9  |-  ( X  e.  W  ->  [_ X  /  x ]_ ( ( { X }  X.  { (ringLMod `  R ) } ) `  x
)  =  ( ( { X }  X.  { (ringLMod `  R ) } ) `  X
) )
1817fveq2d 5593 . . . . . . . 8  |-  ( X  e.  W  ->  ( Base `  [_ X  /  x ]_ ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) )  =  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  X ) ) )
1916, 18eqtrd 2239 . . . . . . 7  |-  ( X  e.  W  ->  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  X ) ) )
2019adantl 277 . . . . . 6  |-  ( ( R  e.  V  /\  X  e.  W )  ->  [_ X  /  x ]_ ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  X ) ) )
21 rlmbasg 14292 . . . . . . 7  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  (ringLMod `  R ) ) )
2221adantr 276 . . . . . 6  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( Base `  R
)  =  ( Base `  (ringLMod `  R )
) )
2315, 20, 223eqtr4d 2249 . . . . 5  |-  ( ( R  e.  V  /\  X  e.  W )  ->  [_ X  /  x ]_ ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  R
) )
2423eleq2d 2276 . . . 4  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( f `  X )  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) )  <->  ( f `  X )  e.  (
Base `  R )
) )
2524anbi2d 464 . . 3  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( f  Fn 
{ X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) ) )  <-> 
( f  Fn  { X }  /\  (
f `  X )  e.  ( Base `  R
) ) ) )
2625abbidv 2324 . 2  |-  ( ( R  e.  V  /\  X  e.  W )  ->  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) ) ) }  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  (
Base `  R )
) } )
272, 26eqtrd 2239 1  |-  ( ( R  e.  V  /\  X  e.  W )  -> 
X_ x  e.  { X }  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  (
Base `  R )
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   {cab 2192   _Vcvv 2773   [_csb 3097   {csn 3638   <.cop 3641    X. cxp 4681    Fn wfn 5275   ` cfv 5280   X_cixp 6798   Basecbs 12907  ringLModcrglmod 14271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4167  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593  ax-cnex 8036  ax-resscn 8037  ax-1cn 8038  ax-1re 8039  ax-icn 8040  ax-addcl 8041  ax-addrcl 8042  ax-mulcl 8043  ax-addcom 8045  ax-addass 8047  ax-i2m1 8050  ax-0lt1 8051  ax-0id 8053  ax-rnegex 8054  ax-pre-ltirr 8057  ax-pre-lttrn 8059  ax-pre-ltadd 8061
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-int 3892  df-iun 3935  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-ima 4696  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-f1 5285  df-fo 5286  df-f1o 5287  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-ixp 6799  df-pnf 8129  df-mnf 8130  df-ltxr 8132  df-inn 9057  df-2 9115  df-3 9116  df-4 9117  df-5 9118  df-6 9119  df-7 9120  df-8 9121  df-ndx 12910  df-slot 12911  df-base 12913  df-sets 12914  df-iress 12915  df-mulr 12998  df-sca 13000  df-vsca 13001  df-ip 13002  df-sra 14272  df-rgmod 14273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator