ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnbasval Unicode version

Theorem ixpsnbasval 13965
Description: The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnbasval  |-  ( ( R  e.  V  /\  X  e.  W )  -> 
X_ x  e.  { X }  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  (
Base `  R )
) } )
Distinct variable groups:    R, f, x   
f, V    f, W    f, X, x
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem ixpsnbasval
StepHypRef Expression
1 ixpsnval 6757 . . 3  |-  ( X  e.  W  ->  X_ x  e.  { X }  ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) )  =  { f  |  ( f  Fn 
{ X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) ) ) } )
21adantl 277 . 2  |-  ( ( R  e.  V  /\  X  e.  W )  -> 
X_ x  e.  { X }  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) ) ) } )
3 rlmfn 13952 . . . . . . . . . . . 12  |- ringLMod  Fn  _V
4 elex 2771 . . . . . . . . . . . 12  |-  ( R  e.  V  ->  R  e.  _V )
5 funfvex 5572 . . . . . . . . . . . . 13  |-  ( ( Fun ringLMod  /\  R  e.  dom ringLMod )  ->  (ringLMod `  R )  e.  _V )
65funfni 5355 . . . . . . . . . . . 12  |-  ( (ringLMod  Fn  _V  /\  R  e. 
_V )  ->  (ringLMod `  R )  e.  _V )
73, 4, 6sylancr 414 . . . . . . . . . . 11  |-  ( R  e.  V  ->  (ringLMod `  R )  e.  _V )
87anim1ci 341 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( X  e.  W  /\  (ringLMod `  R )  e.  _V ) )
9 xpsng 5734 . . . . . . . . . 10  |-  ( ( X  e.  W  /\  (ringLMod `  R )  e. 
_V )  ->  ( { X }  X.  {
(ringLMod `  R ) } )  =  { <. X ,  (ringLMod `  R
) >. } )
108, 9syl 14 . . . . . . . . 9  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( { X }  X.  { (ringLMod `  R
) } )  =  { <. X ,  (ringLMod `  R ) >. } )
1110fveq1d 5557 . . . . . . . 8  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( { X }  X.  { (ringLMod `  R
) } ) `  X )  =  ( { <. X ,  (ringLMod `  R ) >. } `  X ) )
12 fvsng 5755 . . . . . . . . 9  |-  ( ( X  e.  W  /\  (ringLMod `  R )  e. 
_V )  ->  ( { <. X ,  (ringLMod `  R ) >. } `  X )  =  (ringLMod `  R ) )
138, 12syl 14 . . . . . . . 8  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( { <. X , 
(ringLMod `  R ) >. } `  X )  =  (ringLMod `  R )
)
1411, 13eqtrd 2226 . . . . . . 7  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( { X }  X.  { (ringLMod `  R
) } ) `  X )  =  (ringLMod `  R ) )
1514fveq2d 5559 . . . . . 6  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  X ) )  =  ( Base `  (ringLMod `  R ) ) )
16 csbfv2g 5594 . . . . . . . 8  |-  ( X  e.  W  ->  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  [_ X  /  x ]_ ( ( { X }  X.  { (ringLMod `  R ) } ) `  x
) ) )
17 csbfvg 5595 . . . . . . . . 9  |-  ( X  e.  W  ->  [_ X  /  x ]_ ( ( { X }  X.  { (ringLMod `  R ) } ) `  x
)  =  ( ( { X }  X.  { (ringLMod `  R ) } ) `  X
) )
1817fveq2d 5559 . . . . . . . 8  |-  ( X  e.  W  ->  ( Base `  [_ X  /  x ]_ ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) )  =  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  X ) ) )
1916, 18eqtrd 2226 . . . . . . 7  |-  ( X  e.  W  ->  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  X ) ) )
2019adantl 277 . . . . . 6  |-  ( ( R  e.  V  /\  X  e.  W )  ->  [_ X  /  x ]_ ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  X ) ) )
21 rlmbasg 13954 . . . . . . 7  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  (ringLMod `  R ) ) )
2221adantr 276 . . . . . 6  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( Base `  R
)  =  ( Base `  (ringLMod `  R )
) )
2315, 20, 223eqtr4d 2236 . . . . 5  |-  ( ( R  e.  V  /\  X  e.  W )  ->  [_ X  /  x ]_ ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  R
) )
2423eleq2d 2263 . . . 4  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( f `  X )  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) )  <->  ( f `  X )  e.  (
Base `  R )
) )
2524anbi2d 464 . . 3  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( f  Fn 
{ X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) ) )  <-> 
( f  Fn  { X }  /\  (
f `  X )  e.  ( Base `  R
) ) ) )
2625abbidv 2311 . 2  |-  ( ( R  e.  V  /\  X  e.  W )  ->  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) ) ) }  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  (
Base `  R )
) } )
272, 26eqtrd 2226 1  |-  ( ( R  e.  V  /\  X  e.  W )  -> 
X_ x  e.  { X }  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  (
Base `  R )
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164   {cab 2179   _Vcvv 2760   [_csb 3081   {csn 3619   <.cop 3622    X. cxp 4658    Fn wfn 5250   ` cfv 5255   X_cixp 6754   Basecbs 12621  ringLModcrglmod 13933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4145  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-un 4465  ax-setind 4570  ax-cnex 7965  ax-resscn 7966  ax-1cn 7967  ax-1re 7968  ax-icn 7969  ax-addcl 7970  ax-addrcl 7971  ax-mulcl 7972  ax-addcom 7974  ax-addass 7976  ax-i2m1 7979  ax-0lt1 7980  ax-0id 7982  ax-rnegex 7983  ax-pre-ltirr 7986  ax-pre-lttrn 7988  ax-pre-ltadd 7990
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-int 3872  df-iun 3915  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-ov 5922  df-oprab 5923  df-mpo 5924  df-ixp 6755  df-pnf 8058  df-mnf 8059  df-ltxr 8061  df-inn 8985  df-2 9043  df-3 9044  df-4 9045  df-5 9046  df-6 9047  df-7 9048  df-8 9049  df-ndx 12624  df-slot 12625  df-base 12627  df-sets 12628  df-iress 12629  df-mulr 12712  df-sca 12714  df-vsca 12715  df-ip 12716  df-sra 13934  df-rgmod 13935
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator