ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnbasval Unicode version

Theorem ixpsnbasval 14146
Description: The value of an infinite Cartesian product of the base of a left module over a ring with a singleton. (Contributed by AV, 3-Dec-2018.)
Assertion
Ref Expression
ixpsnbasval  |-  ( ( R  e.  V  /\  X  e.  W )  -> 
X_ x  e.  { X }  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  (
Base `  R )
) } )
Distinct variable groups:    R, f, x   
f, V    f, W    f, X, x
Allowed substitution hints:    V( x)    W( x)

Proof of Theorem ixpsnbasval
StepHypRef Expression
1 ixpsnval 6778 . . 3  |-  ( X  e.  W  ->  X_ x  e.  { X }  ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) )  =  { f  |  ( f  Fn 
{ X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) ) ) } )
21adantl 277 . 2  |-  ( ( R  e.  V  /\  X  e.  W )  -> 
X_ x  e.  { X }  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) ) ) } )
3 rlmfn 14133 . . . . . . . . . . . 12  |- ringLMod  Fn  _V
4 elex 2782 . . . . . . . . . . . 12  |-  ( R  e.  V  ->  R  e.  _V )
5 funfvex 5587 . . . . . . . . . . . . 13  |-  ( ( Fun ringLMod  /\  R  e.  dom ringLMod )  ->  (ringLMod `  R )  e.  _V )
65funfni 5370 . . . . . . . . . . . 12  |-  ( (ringLMod  Fn  _V  /\  R  e. 
_V )  ->  (ringLMod `  R )  e.  _V )
73, 4, 6sylancr 414 . . . . . . . . . . 11  |-  ( R  e.  V  ->  (ringLMod `  R )  e.  _V )
87anim1ci 341 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( X  e.  W  /\  (ringLMod `  R )  e.  _V ) )
9 xpsng 5749 . . . . . . . . . 10  |-  ( ( X  e.  W  /\  (ringLMod `  R )  e. 
_V )  ->  ( { X }  X.  {
(ringLMod `  R ) } )  =  { <. X ,  (ringLMod `  R
) >. } )
108, 9syl 14 . . . . . . . . 9  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( { X }  X.  { (ringLMod `  R
) } )  =  { <. X ,  (ringLMod `  R ) >. } )
1110fveq1d 5572 . . . . . . . 8  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( { X }  X.  { (ringLMod `  R
) } ) `  X )  =  ( { <. X ,  (ringLMod `  R ) >. } `  X ) )
12 fvsng 5770 . . . . . . . . 9  |-  ( ( X  e.  W  /\  (ringLMod `  R )  e. 
_V )  ->  ( { <. X ,  (ringLMod `  R ) >. } `  X )  =  (ringLMod `  R ) )
138, 12syl 14 . . . . . . . 8  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( { <. X , 
(ringLMod `  R ) >. } `  X )  =  (ringLMod `  R )
)
1411, 13eqtrd 2237 . . . . . . 7  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( { X }  X.  { (ringLMod `  R
) } ) `  X )  =  (ringLMod `  R ) )
1514fveq2d 5574 . . . . . 6  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  X ) )  =  ( Base `  (ringLMod `  R ) ) )
16 csbfv2g 5609 . . . . . . . 8  |-  ( X  e.  W  ->  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  [_ X  /  x ]_ ( ( { X }  X.  { (ringLMod `  R ) } ) `  x
) ) )
17 csbfvg 5610 . . . . . . . . 9  |-  ( X  e.  W  ->  [_ X  /  x ]_ ( ( { X }  X.  { (ringLMod `  R ) } ) `  x
)  =  ( ( { X }  X.  { (ringLMod `  R ) } ) `  X
) )
1817fveq2d 5574 . . . . . . . 8  |-  ( X  e.  W  ->  ( Base `  [_ X  /  x ]_ ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) )  =  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  X ) ) )
1916, 18eqtrd 2237 . . . . . . 7  |-  ( X  e.  W  ->  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  X ) ) )
2019adantl 277 . . . . . 6  |-  ( ( R  e.  V  /\  X  e.  W )  ->  [_ X  /  x ]_ ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  X ) ) )
21 rlmbasg 14135 . . . . . . 7  |-  ( R  e.  V  ->  ( Base `  R )  =  ( Base `  (ringLMod `  R ) ) )
2221adantr 276 . . . . . 6  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( Base `  R
)  =  ( Base `  (ringLMod `  R )
) )
2315, 20, 223eqtr4d 2247 . . . . 5  |-  ( ( R  e.  V  /\  X  e.  W )  ->  [_ X  /  x ]_ ( Base `  (
( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  ( Base `  R
) )
2423eleq2d 2274 . . . 4  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( f `  X )  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) )  <->  ( f `  X )  e.  (
Base `  R )
) )
2524anbi2d 464 . . 3  |-  ( ( R  e.  V  /\  X  e.  W )  ->  ( ( f  Fn 
{ X }  /\  ( f `  X
)  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) ) )  <-> 
( f  Fn  { X }  /\  (
f `  X )  e.  ( Base `  R
) ) ) )
2625abbidv 2322 . 2  |-  ( ( R  e.  V  /\  X  e.  W )  ->  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  [_ X  /  x ]_ ( Base `  ( ( { X }  X.  {
(ringLMod `  R ) } ) `  x ) ) ) }  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  (
Base `  R )
) } )
272, 26eqtrd 2237 1  |-  ( ( R  e.  V  /\  X  e.  W )  -> 
X_ x  e.  { X }  ( Base `  ( ( { X }  X.  { (ringLMod `  R
) } ) `  x ) )  =  { f  |  ( f  Fn  { X }  /\  ( f `  X )  e.  (
Base `  R )
) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   {cab 2190   _Vcvv 2771   [_csb 3092   {csn 3632   <.cop 3635    X. cxp 4671    Fn wfn 5263   ` cfv 5268   X_cixp 6775   Basecbs 12751  ringLModcrglmod 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-ov 5937  df-oprab 5938  df-mpo 5939  df-ixp 6776  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-4 9079  df-5 9080  df-6 9081  df-7 9082  df-8 9083  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-iress 12759  df-mulr 12842  df-sca 12844  df-vsca 12845  df-ip 12846  df-sra 14115  df-rgmod 14116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator