ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prod3fmul Unicode version

Theorem prod3fmul 11885
Description: The product of two infinite products. (Contributed by Scott Fenton, 18-Dec-2017.) (Revised by Jim Kingdon, 22-Mar-2024.)
Hypotheses
Ref Expression
prodfmul.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prod3fmul.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
prod3fmul.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
prod3fmul.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  x.  ( G `
 k ) ) )
Assertion
Ref Expression
prod3fmul  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq M (  x.  ,  G ) `
 N ) ) )
Distinct variable groups:    k, F    k, G    k, H    ph, k    k, M    k, N

Proof of Theorem prod3fmul
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulcl 8054 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
21adantl 277 . 2  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  e.  CC )
3 mulcom 8056 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  =  ( y  x.  x ) )
43adantl 277 . 2  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC ) )  -> 
( x  x.  y
)  =  ( y  x.  x ) )
5 mulass 8058 . . 3  |-  ( ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC )  ->  (
( x  x.  y
)  x.  z )  =  ( x  x.  ( y  x.  z
) ) )
65adantl 277 . 2  |-  ( (
ph  /\  ( x  e.  CC  /\  y  e.  CC  /\  z  e.  CC ) )  -> 
( ( x  x.  y )  x.  z
)  =  ( x  x.  ( y  x.  z ) ) )
7 prodfmul.1 . 2  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
8 prod3fmul.2 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
9 prod3fmul.3 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
10 prod3fmul.4 . 2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  x.  ( G `
 k ) ) )
112, 4, 6, 7, 8, 9, 10seq3caopr 10642 1  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq M (  x.  ,  G ) `
 N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5272  (class class class)co 5946   CCcc 7925    x. cmul 7932   ZZ>=cuz 9650    seqcseq 10594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-iinf 4637  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-mulcom 8028  ax-addass 8029  ax-mulass 8030  ax-distr 8031  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-cnre 8038  ax-pre-ltirr 8039  ax-pre-ltwlin 8040  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-tr 4144  df-id 4341  df-iord 4414  df-on 4416  df-ilim 4417  df-suc 4419  df-iom 4640  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-recs 6393  df-frec 6479  df-pnf 8111  df-mnf 8112  df-xr 8113  df-ltxr 8114  df-le 8115  df-sub 8247  df-neg 8248  df-inn 9039  df-n0 9298  df-z 9375  df-uz 9651  df-fz 10133  df-fzo 10267  df-seqfrec 10595
This theorem is referenced by:  prodfdivap  11891  fprodmul  11935  lgsdir  15545  lgsdi  15547
  Copyright terms: Public domain W3C validator