Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodfdivap | Unicode version |
Description: The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.) |
Ref | Expression |
---|---|
prodfdiv.1 | |
prodfdivap.2 | |
prodfdivap.3 | |
prodfdivap.4 | # |
prodfdivap.5 |
Ref | Expression |
---|---|
prodfdivap |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodfdiv.1 | . . . 4 | |
2 | prodfdivap.3 | . . . 4 | |
3 | elfzuz 9977 | . . . . 5 | |
4 | prodfdivap.4 | . . . . 5 # | |
5 | 3, 4 | sylan2 284 | . . . 4 # |
6 | eqid 2170 | . . . . . 6 | |
7 | fveq2 5496 | . . . . . . 7 | |
8 | 7 | oveq2d 5869 | . . . . . 6 |
9 | simpr 109 | . . . . . 6 | |
10 | 2, 4 | recclapd 8698 | . . . . . 6 |
11 | 6, 8, 9, 10 | fvmptd3 5589 | . . . . 5 |
12 | 3, 11 | sylan2 284 | . . . 4 |
13 | 11, 10 | eqeltrd 2247 | . . . 4 |
14 | 1, 2, 5, 12, 13 | prodfrecap 11509 | . . 3 |
15 | 14 | oveq2d 5869 | . 2 |
16 | prodfdivap.2 | . . 3 | |
17 | eleq1w 2231 | . . . . . . . . 9 | |
18 | 17 | anbi2d 461 | . . . . . . . 8 |
19 | fveq2 5496 | . . . . . . . . 9 | |
20 | 19 | eleq1d 2239 | . . . . . . . 8 |
21 | 18, 20 | imbi12d 233 | . . . . . . 7 |
22 | 21, 2 | chvarvv 1901 | . . . . . 6 |
23 | 19 | breq1d 3999 | . . . . . . . 8 # # |
24 | 18, 23 | imbi12d 233 | . . . . . . 7 # # |
25 | 24, 4 | chvarvv 1901 | . . . . . 6 # |
26 | 22, 25 | recclapd 8698 | . . . . 5 |
27 | 26 | fmpttd 5651 | . . . 4 |
28 | 27 | ffvelrnda 5631 | . . 3 |
29 | 16, 2, 4 | divrecapd 8710 | . . . 4 |
30 | prodfdivap.5 | . . . 4 | |
31 | 11 | oveq2d 5869 | . . . 4 |
32 | 29, 30, 31 | 3eqtr4d 2213 | . . 3 |
33 | 1, 16, 28, 32 | prod3fmul 11504 | . 2 |
34 | eqid 2170 | . . . . 5 | |
35 | eluzel2 9492 | . . . . . 6 | |
36 | 1, 35 | syl 14 | . . . . 5 |
37 | 34, 36, 16 | prodf 11501 | . . . 4 |
38 | 37, 1 | ffvelrnd 5632 | . . 3 |
39 | 34, 36, 2 | prodf 11501 | . . . 4 |
40 | 39, 1 | ffvelrnd 5632 | . . 3 |
41 | 1, 2, 5 | prodfap0 11508 | . . 3 # |
42 | 38, 40, 41 | divrecapd 8710 | . 2 |
43 | 15, 33, 42 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 class class class wbr 3989 cmpt 4050 cfv 5198 (class class class)co 5853 cc 7772 cc0 7774 c1 7775 cmul 7779 # cap 8500 cdiv 8589 cz 9212 cuz 9487 cfz 9965 cseq 10401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-po 4281 df-iso 4282 df-iord 4351 df-on 4353 df-ilim 4354 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-1st 6119 df-2nd 6120 df-recs 6284 df-frec 6370 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-uz 9488 df-fz 9966 df-fzo 10099 df-seqfrec 10402 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |