Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > prodfdivap | Unicode version |
Description: The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.) |
Ref | Expression |
---|---|
prodfdiv.1 | |
prodfdivap.2 | |
prodfdivap.3 | |
prodfdivap.4 | # |
prodfdivap.5 |
Ref | Expression |
---|---|
prodfdivap |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prodfdiv.1 | . . . 4 | |
2 | prodfdivap.3 | . . . 4 | |
3 | elfzuz 9970 | . . . . 5 | |
4 | prodfdivap.4 | . . . . 5 # | |
5 | 3, 4 | sylan2 284 | . . . 4 # |
6 | eqid 2170 | . . . . . 6 | |
7 | fveq2 5494 | . . . . . . 7 | |
8 | 7 | oveq2d 5867 | . . . . . 6 |
9 | simpr 109 | . . . . . 6 | |
10 | 2, 4 | recclapd 8691 | . . . . . 6 |
11 | 6, 8, 9, 10 | fvmptd3 5587 | . . . . 5 |
12 | 3, 11 | sylan2 284 | . . . 4 |
13 | 11, 10 | eqeltrd 2247 | . . . 4 |
14 | 1, 2, 5, 12, 13 | prodfrecap 11502 | . . 3 |
15 | 14 | oveq2d 5867 | . 2 |
16 | prodfdivap.2 | . . 3 | |
17 | eleq1w 2231 | . . . . . . . . 9 | |
18 | 17 | anbi2d 461 | . . . . . . . 8 |
19 | fveq2 5494 | . . . . . . . . 9 | |
20 | 19 | eleq1d 2239 | . . . . . . . 8 |
21 | 18, 20 | imbi12d 233 | . . . . . . 7 |
22 | 21, 2 | chvarvv 1901 | . . . . . 6 |
23 | 19 | breq1d 3997 | . . . . . . . 8 # # |
24 | 18, 23 | imbi12d 233 | . . . . . . 7 # # |
25 | 24, 4 | chvarvv 1901 | . . . . . 6 # |
26 | 22, 25 | recclapd 8691 | . . . . 5 |
27 | 26 | fmpttd 5649 | . . . 4 |
28 | 27 | ffvelrnda 5629 | . . 3 |
29 | 16, 2, 4 | divrecapd 8703 | . . . 4 |
30 | prodfdivap.5 | . . . 4 | |
31 | 11 | oveq2d 5867 | . . . 4 |
32 | 29, 30, 31 | 3eqtr4d 2213 | . . 3 |
33 | 1, 16, 28, 32 | prod3fmul 11497 | . 2 |
34 | eqid 2170 | . . . . 5 | |
35 | eluzel2 9485 | . . . . . 6 | |
36 | 1, 35 | syl 14 | . . . . 5 |
37 | 34, 36, 16 | prodf 11494 | . . . 4 |
38 | 37, 1 | ffvelrnd 5630 | . . 3 |
39 | 34, 36, 2 | prodf 11494 | . . . 4 |
40 | 39, 1 | ffvelrnd 5630 | . . 3 |
41 | 1, 2, 5 | prodfap0 11501 | . . 3 # |
42 | 38, 40, 41 | divrecapd 8703 | . 2 |
43 | 15, 33, 42 | 3eqtr4d 2213 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1348 wcel 2141 class class class wbr 3987 cmpt 4048 cfv 5196 (class class class)co 5851 cc 7765 cc0 7767 c1 7768 cmul 7772 # cap 8493 cdiv 8582 cz 9205 cuz 9480 cfz 9958 cseq 10394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 ax-cnex 7858 ax-resscn 7859 ax-1cn 7860 ax-1re 7861 ax-icn 7862 ax-addcl 7863 ax-addrcl 7864 ax-mulcl 7865 ax-mulrcl 7866 ax-addcom 7867 ax-mulcom 7868 ax-addass 7869 ax-mulass 7870 ax-distr 7871 ax-i2m1 7872 ax-0lt1 7873 ax-1rid 7874 ax-0id 7875 ax-rnegex 7876 ax-precex 7877 ax-cnre 7878 ax-pre-ltirr 7879 ax-pre-ltwlin 7880 ax-pre-lttrn 7881 ax-pre-apti 7882 ax-pre-ltadd 7883 ax-pre-mulgt0 7884 ax-pre-mulext 7885 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-ilim 4352 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-riota 5807 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-frec 6368 df-pnf 7949 df-mnf 7950 df-xr 7951 df-ltxr 7952 df-le 7953 df-sub 8085 df-neg 8086 df-reap 8487 df-ap 8494 df-div 8583 df-inn 8872 df-n0 9129 df-z 9206 df-uz 9481 df-fz 9959 df-fzo 10092 df-seqfrec 10395 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |