ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfdivap Unicode version

Theorem prodfdivap 11712
Description: The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfdiv.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfdivap.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
prodfdivap.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
prodfdivap.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k ) #  0 )
prodfdivap.5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  /  ( G `
 k ) ) )
Assertion
Ref Expression
prodfdivap  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) ) )
Distinct variable groups:    k, F    k, G    k, H    ph, k    k, M    k, N

Proof of Theorem prodfdivap
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 prodfdivap.3 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
3 elfzuz 10096 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
4 prodfdivap.4 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k ) #  0 )
53, 4sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k ) #  0 )
6 eqid 2196 . . . . . 6  |-  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) )  =  ( n  e.  (
ZZ>= `  M )  |->  ( 1  /  ( G `
 n ) ) )
7 fveq2 5558 . . . . . . 7  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
87oveq2d 5938 . . . . . 6  |-  ( n  =  k  ->  (
1  /  ( G `
 n ) )  =  ( 1  / 
( G `  k
) ) )
9 simpr 110 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
102, 4recclapd 8808 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 1  /  ( G `  k ) )  e.  CC )
116, 8, 9, 10fvmptd3 5655 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  =  ( 1  /  ( G `  k )
) )
123, 11sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  =  ( 1  /  ( G `  k )
) )
1311, 10eqeltrd 2273 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  e.  CC )
141, 2, 5, 12, 13prodfrecap 11711 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) ) ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  G ) `  N
) ) )
1514oveq2d 5938 . 2  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq M (  x.  ,  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) ) ) `
 N ) )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  ( 1  /  (  seq M
(  x.  ,  G
) `  N )
) ) )
16 prodfdivap.2 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
17 eleq1w 2257 . . . . . . . . 9  |-  ( k  =  n  ->  (
k  e.  ( ZZ>= `  M )  <->  n  e.  ( ZZ>= `  M )
) )
1817anbi2d 464 . . . . . . . 8  |-  ( k  =  n  ->  (
( ph  /\  k  e.  ( ZZ>= `  M )
)  <->  ( ph  /\  n  e.  ( ZZ>= `  M ) ) ) )
19 fveq2 5558 . . . . . . . . 9  |-  ( k  =  n  ->  ( G `  k )  =  ( G `  n ) )
2019eleq1d 2265 . . . . . . . 8  |-  ( k  =  n  ->  (
( G `  k
)  e.  CC  <->  ( G `  n )  e.  CC ) )
2118, 20imbi12d 234 . . . . . . 7  |-  ( k  =  n  ->  (
( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> 
( G `  k
)  e.  CC )  <-> 
( ( ph  /\  n  e.  ( ZZ>= `  M ) )  -> 
( G `  n
)  e.  CC ) ) )
2221, 2chvarvv 1923 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( G `  n )  e.  CC )
2319breq1d 4043 . . . . . . . 8  |-  ( k  =  n  ->  (
( G `  k
) #  0  <->  ( G `  n ) #  0 ) )
2418, 23imbi12d 234 . . . . . . 7  |-  ( k  =  n  ->  (
( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> 
( G `  k
) #  0 )  <->  ( ( ph  /\  n  e.  (
ZZ>= `  M ) )  ->  ( G `  n ) #  0 ) ) )
2524, 4chvarvv 1923 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( G `  n ) #  0 )
2622, 25recclapd 8808 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 1  /  ( G `  n ) )  e.  CC )
2726fmpttd 5717 . . . 4  |-  ( ph  ->  ( n  e.  (
ZZ>= `  M )  |->  ( 1  /  ( G `
 n ) ) ) : ( ZZ>= `  M ) --> CC )
2827ffvelcdmda 5697 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  e.  CC )
2916, 2, 4divrecapd 8820 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k )  /  ( G `  k ) )  =  ( ( F `  k )  x.  (
1  /  ( G `
 k ) ) ) )
30 prodfdivap.5 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  /  ( G `
 k ) ) )
3111oveq2d 5938 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k )  x.  ( ( n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n )
) ) `  k
) )  =  ( ( F `  k
)  x.  ( 1  /  ( G `  k ) ) ) )
3229, 30, 313eqtr4d 2239 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  x.  ( ( n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k ) ) )
331, 16, 28, 32prod3fmul 11706 . 2  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq M (  x.  ,  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) ) ) `
 N ) ) )
34 eqid 2196 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
35 eluzel2 9606 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
361, 35syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
3734, 36, 16prodf 11703 . . . 4  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
3837, 1ffvelcdmd 5698 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
3934, 36, 2prodf 11703 . . . 4  |-  ( ph  ->  seq M (  x.  ,  G ) : ( ZZ>= `  M ) --> CC )
4039, 1ffvelcdmd 5698 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  e.  CC )
411, 2, 5prodfap0 11710 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N ) #  0 )
4238, 40, 41divrecapd 8820 . 2  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  ( 1  /  (  seq M
(  x.  ,  G
) `  N )
) ) )
4315, 33, 423eqtr4d 2239 1  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   class class class wbr 4033    |-> cmpt 4094   ` cfv 5258  (class class class)co 5922   CCcc 7877   0cc0 7879   1c1 7880    x. cmul 7884   # cap 8608    / cdiv 8699   ZZcz 9326   ZZ>=cuz 9601   ...cfz 10083    seqcseq 10539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-mulrcl 7978  ax-addcom 7979  ax-mulcom 7980  ax-addass 7981  ax-mulass 7982  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-1rid 7986  ax-0id 7987  ax-rnegex 7988  ax-precex 7989  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-apti 7994  ax-pre-ltadd 7995  ax-pre-mulgt0 7996  ax-pre-mulext 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-po 4331  df-iso 4332  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-reap 8602  df-ap 8609  df-div 8700  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-fz 10084  df-fzo 10218  df-seqfrec 10540
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator