ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfdivap Unicode version

Theorem prodfdivap 12053
Description: The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfdiv.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfdivap.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
prodfdivap.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
prodfdivap.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k ) #  0 )
prodfdivap.5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  /  ( G `
 k ) ) )
Assertion
Ref Expression
prodfdivap  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) ) )
Distinct variable groups:    k, F    k, G    k, H    ph, k    k, M    k, N

Proof of Theorem prodfdivap
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 prodfdivap.3 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
3 elfzuz 10213 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
4 prodfdivap.4 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k ) #  0 )
53, 4sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k ) #  0 )
6 eqid 2229 . . . . . 6  |-  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) )  =  ( n  e.  (
ZZ>= `  M )  |->  ( 1  /  ( G `
 n ) ) )
7 fveq2 5626 . . . . . . 7  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
87oveq2d 6016 . . . . . 6  |-  ( n  =  k  ->  (
1  /  ( G `
 n ) )  =  ( 1  / 
( G `  k
) ) )
9 simpr 110 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
102, 4recclapd 8924 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 1  /  ( G `  k ) )  e.  CC )
116, 8, 9, 10fvmptd3 5727 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  =  ( 1  /  ( G `  k )
) )
123, 11sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  =  ( 1  /  ( G `  k )
) )
1311, 10eqeltrd 2306 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  e.  CC )
141, 2, 5, 12, 13prodfrecap 12052 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) ) ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  G ) `  N
) ) )
1514oveq2d 6016 . 2  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq M (  x.  ,  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) ) ) `
 N ) )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  ( 1  /  (  seq M
(  x.  ,  G
) `  N )
) ) )
16 prodfdivap.2 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
17 eleq1w 2290 . . . . . . . . 9  |-  ( k  =  n  ->  (
k  e.  ( ZZ>= `  M )  <->  n  e.  ( ZZ>= `  M )
) )
1817anbi2d 464 . . . . . . . 8  |-  ( k  =  n  ->  (
( ph  /\  k  e.  ( ZZ>= `  M )
)  <->  ( ph  /\  n  e.  ( ZZ>= `  M ) ) ) )
19 fveq2 5626 . . . . . . . . 9  |-  ( k  =  n  ->  ( G `  k )  =  ( G `  n ) )
2019eleq1d 2298 . . . . . . . 8  |-  ( k  =  n  ->  (
( G `  k
)  e.  CC  <->  ( G `  n )  e.  CC ) )
2118, 20imbi12d 234 . . . . . . 7  |-  ( k  =  n  ->  (
( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> 
( G `  k
)  e.  CC )  <-> 
( ( ph  /\  n  e.  ( ZZ>= `  M ) )  -> 
( G `  n
)  e.  CC ) ) )
2221, 2chvarvv 1955 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( G `  n )  e.  CC )
2319breq1d 4092 . . . . . . . 8  |-  ( k  =  n  ->  (
( G `  k
) #  0  <->  ( G `  n ) #  0 ) )
2418, 23imbi12d 234 . . . . . . 7  |-  ( k  =  n  ->  (
( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> 
( G `  k
) #  0 )  <->  ( ( ph  /\  n  e.  (
ZZ>= `  M ) )  ->  ( G `  n ) #  0 ) ) )
2524, 4chvarvv 1955 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( G `  n ) #  0 )
2622, 25recclapd 8924 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 1  /  ( G `  n ) )  e.  CC )
2726fmpttd 5789 . . . 4  |-  ( ph  ->  ( n  e.  (
ZZ>= `  M )  |->  ( 1  /  ( G `
 n ) ) ) : ( ZZ>= `  M ) --> CC )
2827ffvelcdmda 5769 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  e.  CC )
2916, 2, 4divrecapd 8936 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k )  /  ( G `  k ) )  =  ( ( F `  k )  x.  (
1  /  ( G `
 k ) ) ) )
30 prodfdivap.5 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  /  ( G `
 k ) ) )
3111oveq2d 6016 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k )  x.  ( ( n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n )
) ) `  k
) )  =  ( ( F `  k
)  x.  ( 1  /  ( G `  k ) ) ) )
3229, 30, 313eqtr4d 2272 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  x.  ( ( n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k ) ) )
331, 16, 28, 32prod3fmul 12047 . 2  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq M (  x.  ,  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) ) ) `
 N ) ) )
34 eqid 2229 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
35 eluzel2 9723 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
361, 35syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
3734, 36, 16prodf 12044 . . . 4  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
3837, 1ffvelcdmd 5770 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
3934, 36, 2prodf 12044 . . . 4  |-  ( ph  ->  seq M (  x.  ,  G ) : ( ZZ>= `  M ) --> CC )
4039, 1ffvelcdmd 5770 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  e.  CC )
411, 2, 5prodfap0 12051 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N ) #  0 )
4238, 40, 41divrecapd 8936 . 2  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  ( 1  /  (  seq M
(  x.  ,  G
) `  N )
) ) )
4315, 33, 423eqtr4d 2272 1  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   class class class wbr 4082    |-> cmpt 4144   ` cfv 5317  (class class class)co 6000   CCcc 7993   0cc0 7995   1c1 7996    x. cmul 8000   # cap 8724    / cdiv 8815   ZZcz 9442   ZZ>=cuz 9718   ...cfz 10200    seqcseq 10664
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-uz 9719  df-fz 10201  df-fzo 10335  df-seqfrec 10665
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator