ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodfdivap Unicode version

Theorem prodfdivap 11943
Description: The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.)
Hypotheses
Ref Expression
prodfdiv.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
prodfdivap.2  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
prodfdivap.3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
prodfdivap.4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k ) #  0 )
prodfdivap.5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  /  ( G `
 k ) ) )
Assertion
Ref Expression
prodfdivap  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) ) )
Distinct variable groups:    k, F    k, G    k, H    ph, k    k, M    k, N

Proof of Theorem prodfdivap
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 prodfdiv.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 prodfdivap.3 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k )  e.  CC )
3 elfzuz 10173 . . . . 5  |-  ( k  e.  ( M ... N )  ->  k  e.  ( ZZ>= `  M )
)
4 prodfdivap.4 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( G `  k ) #  0 )
53, 4sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( G `  k ) #  0 )
6 eqid 2206 . . . . . 6  |-  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) )  =  ( n  e.  (
ZZ>= `  M )  |->  ( 1  /  ( G `
 n ) ) )
7 fveq2 5594 . . . . . . 7  |-  ( n  =  k  ->  ( G `  n )  =  ( G `  k ) )
87oveq2d 5978 . . . . . 6  |-  ( n  =  k  ->  (
1  /  ( G `
 n ) )  =  ( 1  / 
( G `  k
) ) )
9 simpr 110 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  k  e.  ( ZZ>= `  M )
)
102, 4recclapd 8884 . . . . . 6  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( 1  /  ( G `  k ) )  e.  CC )
116, 8, 9, 10fvmptd3 5691 . . . . 5  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  =  ( 1  /  ( G `  k )
) )
123, 11sylan2 286 . . . 4  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  =  ( 1  /  ( G `  k )
) )
1311, 10eqeltrd 2283 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  e.  CC )
141, 2, 5, 12, 13prodfrecap 11942 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) ) ) `
 N )  =  ( 1  /  (  seq M (  x.  ,  G ) `  N
) ) )
1514oveq2d 5978 . 2  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq M (  x.  ,  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) ) ) `
 N ) )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  ( 1  /  (  seq M
(  x.  ,  G
) `  N )
) ) )
16 prodfdivap.2 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( F `  k )  e.  CC )
17 eleq1w 2267 . . . . . . . . 9  |-  ( k  =  n  ->  (
k  e.  ( ZZ>= `  M )  <->  n  e.  ( ZZ>= `  M )
) )
1817anbi2d 464 . . . . . . . 8  |-  ( k  =  n  ->  (
( ph  /\  k  e.  ( ZZ>= `  M )
)  <->  ( ph  /\  n  e.  ( ZZ>= `  M ) ) ) )
19 fveq2 5594 . . . . . . . . 9  |-  ( k  =  n  ->  ( G `  k )  =  ( G `  n ) )
2019eleq1d 2275 . . . . . . . 8  |-  ( k  =  n  ->  (
( G `  k
)  e.  CC  <->  ( G `  n )  e.  CC ) )
2118, 20imbi12d 234 . . . . . . 7  |-  ( k  =  n  ->  (
( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> 
( G `  k
)  e.  CC )  <-> 
( ( ph  /\  n  e.  ( ZZ>= `  M ) )  -> 
( G `  n
)  e.  CC ) ) )
2221, 2chvarvv 1933 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( G `  n )  e.  CC )
2319breq1d 4064 . . . . . . . 8  |-  ( k  =  n  ->  (
( G `  k
) #  0  <->  ( G `  n ) #  0 ) )
2418, 23imbi12d 234 . . . . . . 7  |-  ( k  =  n  ->  (
( ( ph  /\  k  e.  ( ZZ>= `  M ) )  -> 
( G `  k
) #  0 )  <->  ( ( ph  /\  n  e.  (
ZZ>= `  M ) )  ->  ( G `  n ) #  0 ) ) )
2524, 4chvarvv 1933 . . . . . 6  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( G `  n ) #  0 )
2622, 25recclapd 8884 . . . . 5  |-  ( (
ph  /\  n  e.  ( ZZ>= `  M )
)  ->  ( 1  /  ( G `  n ) )  e.  CC )
2726fmpttd 5753 . . . 4  |-  ( ph  ->  ( n  e.  (
ZZ>= `  M )  |->  ( 1  /  ( G `
 n ) ) ) : ( ZZ>= `  M ) --> CC )
2827ffvelcdmda 5733 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( (
n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k )  e.  CC )
2916, 2, 4divrecapd 8896 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k )  /  ( G `  k ) )  =  ( ( F `  k )  x.  (
1  /  ( G `
 k ) ) ) )
30 prodfdivap.5 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  /  ( G `
 k ) ) )
3111oveq2d 5978 . . . 4  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( ( F `  k )  x.  ( ( n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n )
) ) `  k
) )  =  ( ( F `  k
)  x.  ( 1  /  ( G `  k ) ) ) )
3229, 30, 313eqtr4d 2249 . . 3  |-  ( (
ph  /\  k  e.  ( ZZ>= `  M )
)  ->  ( H `  k )  =  ( ( F `  k
)  x.  ( ( n  e.  ( ZZ>= `  M )  |->  ( 1  /  ( G `  n ) ) ) `
 k ) ) )
331, 16, 28, 32prod3fmul 11937 . 2  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  x.  (  seq M (  x.  ,  ( n  e.  ( ZZ>= `  M
)  |->  ( 1  / 
( G `  n
) ) ) ) `
 N ) ) )
34 eqid 2206 . . . . 5  |-  ( ZZ>= `  M )  =  (
ZZ>= `  M )
35 eluzel2 9683 . . . . . 6  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
361, 35syl 14 . . . . 5  |-  ( ph  ->  M  e.  ZZ )
3734, 36, 16prodf 11934 . . . 4  |-  ( ph  ->  seq M (  x.  ,  F ) : ( ZZ>= `  M ) --> CC )
3837, 1ffvelcdmd 5734 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  F ) `
 N )  e.  CC )
3934, 36, 2prodf 11934 . . . 4  |-  ( ph  ->  seq M (  x.  ,  G ) : ( ZZ>= `  M ) --> CC )
4039, 1ffvelcdmd 5734 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N )  e.  CC )
411, 2, 5prodfap0 11941 . . 3  |-  ( ph  ->  (  seq M (  x.  ,  G ) `
 N ) #  0 )
4238, 40, 41divrecapd 8896 . 2  |-  ( ph  ->  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) )  =  ( (  seq M (  x.  ,  F ) `  N
)  x.  ( 1  /  (  seq M
(  x.  ,  G
) `  N )
) ) )
4315, 33, 423eqtr4d 2249 1  |-  ( ph  ->  (  seq M (  x.  ,  H ) `
 N )  =  ( (  seq M
(  x.  ,  F
) `  N )  /  (  seq M (  x.  ,  G ) `
 N ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177   class class class wbr 4054    |-> cmpt 4116   ` cfv 5285  (class class class)co 5962   CCcc 7953   0cc0 7955   1c1 7956    x. cmul 7960   # cap 8684    / cdiv 8775   ZZcz 9402   ZZ>=cuz 9678   ...cfz 10160    seqcseq 10624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-n0 9326  df-z 9403  df-uz 9679  df-fz 10161  df-fzo 10295  df-seqfrec 10625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator