| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > prodfdivap | Unicode version | ||
| Description: The quotient of two products. (Contributed by Scott Fenton, 15-Jan-2018.) (Revised by Jim Kingdon, 24-Mar-2024.) |
| Ref | Expression |
|---|---|
| prodfdiv.1 |
|
| prodfdivap.2 |
|
| prodfdivap.3 |
|
| prodfdivap.4 |
|
| prodfdivap.5 |
|
| Ref | Expression |
|---|---|
| prodfdivap |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodfdiv.1 |
. . . 4
| |
| 2 | prodfdivap.3 |
. . . 4
| |
| 3 | elfzuz 10173 |
. . . . 5
| |
| 4 | prodfdivap.4 |
. . . . 5
| |
| 5 | 3, 4 | sylan2 286 |
. . . 4
|
| 6 | eqid 2206 |
. . . . . 6
| |
| 7 | fveq2 5594 |
. . . . . . 7
| |
| 8 | 7 | oveq2d 5978 |
. . . . . 6
|
| 9 | simpr 110 |
. . . . . 6
| |
| 10 | 2, 4 | recclapd 8884 |
. . . . . 6
|
| 11 | 6, 8, 9, 10 | fvmptd3 5691 |
. . . . 5
|
| 12 | 3, 11 | sylan2 286 |
. . . 4
|
| 13 | 11, 10 | eqeltrd 2283 |
. . . 4
|
| 14 | 1, 2, 5, 12, 13 | prodfrecap 11942 |
. . 3
|
| 15 | 14 | oveq2d 5978 |
. 2
|
| 16 | prodfdivap.2 |
. . 3
| |
| 17 | eleq1w 2267 |
. . . . . . . . 9
| |
| 18 | 17 | anbi2d 464 |
. . . . . . . 8
|
| 19 | fveq2 5594 |
. . . . . . . . 9
| |
| 20 | 19 | eleq1d 2275 |
. . . . . . . 8
|
| 21 | 18, 20 | imbi12d 234 |
. . . . . . 7
|
| 22 | 21, 2 | chvarvv 1933 |
. . . . . 6
|
| 23 | 19 | breq1d 4064 |
. . . . . . . 8
|
| 24 | 18, 23 | imbi12d 234 |
. . . . . . 7
|
| 25 | 24, 4 | chvarvv 1933 |
. . . . . 6
|
| 26 | 22, 25 | recclapd 8884 |
. . . . 5
|
| 27 | 26 | fmpttd 5753 |
. . . 4
|
| 28 | 27 | ffvelcdmda 5733 |
. . 3
|
| 29 | 16, 2, 4 | divrecapd 8896 |
. . . 4
|
| 30 | prodfdivap.5 |
. . . 4
| |
| 31 | 11 | oveq2d 5978 |
. . . 4
|
| 32 | 29, 30, 31 | 3eqtr4d 2249 |
. . 3
|
| 33 | 1, 16, 28, 32 | prod3fmul 11937 |
. 2
|
| 34 | eqid 2206 |
. . . . 5
| |
| 35 | eluzel2 9683 |
. . . . . 6
| |
| 36 | 1, 35 | syl 14 |
. . . . 5
|
| 37 | 34, 36, 16 | prodf 11934 |
. . . 4
|
| 38 | 37, 1 | ffvelcdmd 5734 |
. . 3
|
| 39 | 34, 36, 2 | prodf 11934 |
. . . 4
|
| 40 | 39, 1 | ffvelcdmd 5734 |
. . 3
|
| 41 | 1, 2, 5 | prodfap0 11941 |
. . 3
|
| 42 | 38, 40, 41 | divrecapd 8896 |
. 2
|
| 43 | 15, 33, 42 | 3eqtr4d 2249 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-mulrcl 8054 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-0lt1 8061 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-precex 8065 ax-cnre 8066 ax-pre-ltirr 8067 ax-pre-ltwlin 8068 ax-pre-lttrn 8069 ax-pre-apti 8070 ax-pre-ltadd 8071 ax-pre-mulgt0 8072 ax-pre-mulext 8073 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-po 4356 df-iso 4357 df-iord 4426 df-on 4428 df-ilim 4429 df-suc 4431 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-recs 6409 df-frec 6495 df-pnf 8139 df-mnf 8140 df-xr 8141 df-ltxr 8142 df-le 8143 df-sub 8275 df-neg 8276 df-reap 8678 df-ap 8685 df-div 8776 df-inn 9067 df-n0 9326 df-z 9403 df-uz 9679 df-fz 10161 df-fzo 10295 df-seqfrec 10625 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |