ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qus0 Unicode version

Theorem qus0 13686
Description: Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h  |-  H  =  ( G  /.s  ( G ~QG  S
) )
qus0.p  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
qus0  |-  ( S  e.  (NrmSGrp `  G
)  ->  [  .0.  ] ( G ~QG  S )  =  ( 0g `  H ) )

Proof of Theorem qus0
StepHypRef Expression
1 nsgsubg 13656 . . . . . . 7  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 subgrcl 13630 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
31, 2syl 14 . . . . . 6  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
4 eqid 2207 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
5 qus0.p . . . . . . 7  |-  .0.  =  ( 0g `  G )
64, 5grpidcl 13476 . . . . . 6  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
73, 6syl 14 . . . . 5  |-  ( S  e.  (NrmSGrp `  G
)  ->  .0.  e.  ( Base `  G )
)
8 qusgrp.h . . . . . 6  |-  H  =  ( G  /.s  ( G ~QG  S
) )
9 eqid 2207 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
10 eqid 2207 . . . . . 6  |-  ( +g  `  H )  =  ( +g  `  H )
118, 4, 9, 10qusadd 13685 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  .0.  e.  ( Base `  G )  /\  .0.  e.  ( Base `  G ) )  -> 
( [  .0.  ]
( G ~QG  S ) ( +g  `  H ) [  .0.  ] ( G ~QG  S ) )  =  [ (  .0.  ( +g  `  G )  .0.  ) ] ( G ~QG  S ) )
127, 7, 11mpd3an23 1352 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( [  .0.  ] ( G ~QG  S ) ( +g  `  H
) [  .0.  ]
( G ~QG  S ) )  =  [ (  .0.  ( +g  `  G )  .0.  ) ] ( G ~QG  S ) )
134, 9, 5grplid 13478 . . . . . 6  |-  ( ( G  e.  Grp  /\  .0.  e.  ( Base `  G
) )  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
143, 7, 13syl2anc 411 . . . . 5  |-  ( S  e.  (NrmSGrp `  G
)  ->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  )
1514eceq1d 6679 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  [ (  .0.  ( +g  `  G
)  .0.  ) ] ( G ~QG  S )  =  [  .0.  ] ( G ~QG  S ) )
1612, 15eqtrd 2240 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( [  .0.  ] ( G ~QG  S ) ( +g  `  H
) [  .0.  ]
( G ~QG  S ) )  =  [  .0.  ] ( G ~QG  S ) )
178qusgrp 13683 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
18 eqid 2207 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
198, 4, 18quseccl 13684 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  .0.  e.  ( Base `  G )
)  ->  [  .0.  ] ( G ~QG  S )  e.  (
Base `  H )
)
207, 19mpdan 421 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  [  .0.  ] ( G ~QG  S )  e.  (
Base `  H )
)
21 eqid 2207 . . . . 5  |-  ( 0g
`  H )  =  ( 0g `  H
)
2218, 10, 21grpid 13486 . . . 4  |-  ( ( H  e.  Grp  /\  [  .0.  ] ( G ~QG  S )  e.  ( Base `  H ) )  -> 
( ( [  .0.  ] ( G ~QG  S ) ( +g  `  H ) [  .0.  ] ( G ~QG  S ) )  =  [  .0.  ] ( G ~QG  S )  <->  ( 0g `  H )  =  [  .0.  ] ( G ~QG  S ) ) )
2317, 20, 22syl2anc 411 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( ( [  .0.  ] ( G ~QG  S ) ( +g  `  H
) [  .0.  ]
( G ~QG  S ) )  =  [  .0.  ] ( G ~QG  S )  <->  ( 0g `  H )  =  [  .0.  ] ( G ~QG  S ) ) )
2416, 23mpbid 147 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( 0g `  H )  =  [  .0.  ] ( G ~QG  S ) )
2524eqcomd 2213 1  |-  ( S  e.  (NrmSGrp `  G
)  ->  [  .0.  ] ( G ~QG  S )  =  ( 0g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   [cec 6641   Basecbs 12947   +g cplusg 13024   0gc0g 13203    /.s cqus 13247   Grpcgrp 13447  SubGrpcsubg 13618  NrmSGrpcnsg 13619   ~QG cqg 13620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-er 6643  df-ec 6645  df-qs 6649  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-iimas 13249  df-qus 13250  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-subg 13621  df-nsg 13622  df-eqg 13623
This theorem is referenced by:  qusinv  13687
  Copyright terms: Public domain W3C validator