ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qus0 Unicode version

Theorem qus0 13767
Description: Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h  |-  H  =  ( G  /.s  ( G ~QG  S
) )
qus0.p  |-  .0.  =  ( 0g `  G )
Assertion
Ref Expression
qus0  |-  ( S  e.  (NrmSGrp `  G
)  ->  [  .0.  ] ( G ~QG  S )  =  ( 0g `  H ) )

Proof of Theorem qus0
StepHypRef Expression
1 nsgsubg 13737 . . . . . . 7  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 subgrcl 13711 . . . . . . 7  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
31, 2syl 14 . . . . . 6  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
4 eqid 2229 . . . . . . 7  |-  ( Base `  G )  =  (
Base `  G )
5 qus0.p . . . . . . 7  |-  .0.  =  ( 0g `  G )
64, 5grpidcl 13557 . . . . . 6  |-  ( G  e.  Grp  ->  .0.  e.  ( Base `  G
) )
73, 6syl 14 . . . . 5  |-  ( S  e.  (NrmSGrp `  G
)  ->  .0.  e.  ( Base `  G )
)
8 qusgrp.h . . . . . 6  |-  H  =  ( G  /.s  ( G ~QG  S
) )
9 eqid 2229 . . . . . 6  |-  ( +g  `  G )  =  ( +g  `  G )
10 eqid 2229 . . . . . 6  |-  ( +g  `  H )  =  ( +g  `  H )
118, 4, 9, 10qusadd 13766 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  .0.  e.  ( Base `  G )  /\  .0.  e.  ( Base `  G ) )  -> 
( [  .0.  ]
( G ~QG  S ) ( +g  `  H ) [  .0.  ] ( G ~QG  S ) )  =  [ (  .0.  ( +g  `  G )  .0.  ) ] ( G ~QG  S ) )
127, 7, 11mpd3an23 1373 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( [  .0.  ] ( G ~QG  S ) ( +g  `  H
) [  .0.  ]
( G ~QG  S ) )  =  [ (  .0.  ( +g  `  G )  .0.  ) ] ( G ~QG  S ) )
134, 9, 5grplid 13559 . . . . . 6  |-  ( ( G  e.  Grp  /\  .0.  e.  ( Base `  G
) )  ->  (  .0.  ( +g  `  G
)  .0.  )  =  .0.  )
143, 7, 13syl2anc 411 . . . . 5  |-  ( S  e.  (NrmSGrp `  G
)  ->  (  .0.  ( +g  `  G )  .0.  )  =  .0.  )
1514eceq1d 6714 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  [ (  .0.  ( +g  `  G
)  .0.  ) ] ( G ~QG  S )  =  [  .0.  ] ( G ~QG  S ) )
1612, 15eqtrd 2262 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( [  .0.  ] ( G ~QG  S ) ( +g  `  H
) [  .0.  ]
( G ~QG  S ) )  =  [  .0.  ] ( G ~QG  S ) )
178qusgrp 13764 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
18 eqid 2229 . . . . . 6  |-  ( Base `  H )  =  (
Base `  H )
198, 4, 18quseccl 13765 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  .0.  e.  ( Base `  G )
)  ->  [  .0.  ] ( G ~QG  S )  e.  (
Base `  H )
)
207, 19mpdan 421 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  [  .0.  ] ( G ~QG  S )  e.  (
Base `  H )
)
21 eqid 2229 . . . . 5  |-  ( 0g
`  H )  =  ( 0g `  H
)
2218, 10, 21grpid 13567 . . . 4  |-  ( ( H  e.  Grp  /\  [  .0.  ] ( G ~QG  S )  e.  ( Base `  H ) )  -> 
( ( [  .0.  ] ( G ~QG  S ) ( +g  `  H ) [  .0.  ] ( G ~QG  S ) )  =  [  .0.  ] ( G ~QG  S )  <->  ( 0g `  H )  =  [  .0.  ] ( G ~QG  S ) ) )
2317, 20, 22syl2anc 411 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( ( [  .0.  ] ( G ~QG  S ) ( +g  `  H
) [  .0.  ]
( G ~QG  S ) )  =  [  .0.  ] ( G ~QG  S )  <->  ( 0g `  H )  =  [  .0.  ] ( G ~QG  S ) ) )
2416, 23mpbid 147 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( 0g `  H )  =  [  .0.  ] ( G ~QG  S ) )
2524eqcomd 2235 1  |-  ( S  e.  (NrmSGrp `  G
)  ->  [  .0.  ] ( G ~QG  S )  =  ( 0g `  H ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    = wceq 1395    e. wcel 2200   ` cfv 5317  (class class class)co 6000   [cec 6676   Basecbs 13027   +g cplusg 13105   0gc0g 13284    /.s cqus 13328   Grpcgrp 13528  SubGrpcsubg 13699  NrmSGrpcnsg 13700   ~QG cqg 13701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-er 6678  df-ec 6680  df-qs 6684  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-iress 13035  df-plusg 13118  df-mulr 13119  df-0g 13286  df-iimas 13330  df-qus 13331  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-grp 13531  df-minusg 13532  df-subg 13702  df-nsg 13703  df-eqg 13704
This theorem is referenced by:  qusinv  13768
  Copyright terms: Public domain W3C validator