ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusinv Unicode version

Theorem qusinv 13200
Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h  |-  H  =  ( G  /.s  ( G ~QG  S
) )
qusinv.v  |-  V  =  ( Base `  G
)
qusinv.i  |-  I  =  ( invg `  G )
qusinv.n  |-  N  =  ( invg `  H )
Assertion
Ref Expression
qusinv  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  ( N `  [ X ] ( G ~QG  S ) )  =  [ ( I `  X ) ] ( G ~QG  S ) )

Proof of Theorem qusinv
StepHypRef Expression
1 nsgsubg 13169 . . . . . 6  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
2 subgrcl 13143 . . . . . 6  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
31, 2syl 14 . . . . 5  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
4 qusinv.v . . . . . 6  |-  V  =  ( Base `  G
)
5 qusinv.i . . . . . 6  |-  I  =  ( invg `  G )
64, 5grpinvcl 13015 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  V )  ->  ( I `  X
)  e.  V )
73, 6sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  (
I `  X )  e.  V )
8 qusgrp.h . . . . 5  |-  H  =  ( G  /.s  ( G ~QG  S
) )
9 eqid 2189 . . . . 5  |-  ( +g  `  G )  =  ( +g  `  G )
10 eqid 2189 . . . . 5  |-  ( +g  `  H )  =  ( +g  `  H )
118, 4, 9, 10qusadd 13198 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V  /\  ( I `  X )  e.  V
)  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( I `
 X ) ] ( G ~QG  S ) )  =  [ ( X ( +g  `  G ) ( I `  X
) ) ] ( G ~QG  S ) )
127, 11mpd3an3 1349 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( I `
 X ) ] ( G ~QG  S ) )  =  [ ( X ( +g  `  G ) ( I `  X
) ) ] ( G ~QG  S ) )
13 eqid 2189 . . . . . 6  |-  ( 0g
`  G )  =  ( 0g `  G
)
144, 9, 13, 5grprinv 13018 . . . . 5  |-  ( ( G  e.  Grp  /\  X  e.  V )  ->  ( X ( +g  `  G ) ( I `
 X ) )  =  ( 0g `  G ) )
153, 14sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  ( X ( +g  `  G
) ( I `  X ) )  =  ( 0g `  G
) )
1615eceq1d 6599 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  [ ( X ( +g  `  G
) ( I `  X ) ) ] ( G ~QG  S )  =  [
( 0g `  G
) ] ( G ~QG  S ) )
178, 13qus0 13199 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  [ ( 0g `  G ) ] ( G ~QG  S )  =  ( 0g `  H ) )
1817adantr 276 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  [ ( 0g `  G ) ] ( G ~QG  S )  =  ( 0g `  H ) )
1912, 16, 183eqtrd 2226 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( I `
 X ) ] ( G ~QG  S ) )  =  ( 0g `  H
) )
208qusgrp 13196 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
2120adantr 276 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  H  e.  Grp )
22 eqid 2189 . . . 4  |-  ( Base `  H )  =  (
Base `  H )
238, 4, 22quseccl 13197 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  [ X ] ( G ~QG  S )  e.  ( Base `  H
) )
248, 4, 22quseccl 13197 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( I `  X )  e.  V
)  ->  [ (
I `  X ) ] ( G ~QG  S )  e.  ( Base `  H
) )
257, 24syldan 282 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  [ ( I `  X ) ] ( G ~QG  S )  e.  ( Base `  H
) )
26 eqid 2189 . . . 4  |-  ( 0g
`  H )  =  ( 0g `  H
)
27 qusinv.n . . . 4  |-  N  =  ( invg `  H )
2822, 10, 26, 27grpinvid1 13019 . . 3  |-  ( ( H  e.  Grp  /\  [ X ] ( G ~QG  S )  e.  ( Base `  H )  /\  [
( I `  X
) ] ( G ~QG  S )  e.  ( Base `  H ) )  -> 
( ( N `  [ X ] ( G ~QG  S ) )  =  [
( I `  X
) ] ( G ~QG  S )  <->  ( [ X ] ( G ~QG  S ) ( +g  `  H
) [ ( I `
 X ) ] ( G ~QG  S ) )  =  ( 0g `  H
) ) )
2921, 23, 25, 28syl3anc 1249 . 2  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  (
( N `  [ X ] ( G ~QG  S ) )  =  [ ( I `  X ) ] ( G ~QG  S )  <-> 
( [ X ]
( G ~QG  S ) ( +g  `  H ) [ ( I `  X ) ] ( G ~QG  S ) )  =  ( 0g
`  H ) ) )
3019, 29mpbird 167 1  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  X  e.  V )  ->  ( N `  [ X ] ( G ~QG  S ) )  =  [ ( I `  X ) ] ( G ~QG  S ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2160   ` cfv 5238  (class class class)co 5900   [cec 6561   Basecbs 12523   +g cplusg 12600   0gc0g 12772    /.s cqus 12788   Grpcgrp 12968   invgcminusg 12969  SubGrpcsubg 13131  NrmSGrpcnsg 13132   ~QG cqg 13133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-tp 3618  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-er 6563  df-ec 6565  df-qs 6569  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-2 9013  df-3 9014  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-iress 12531  df-plusg 12613  df-mulr 12614  df-0g 12774  df-iimas 12790  df-qus 12791  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-grp 12971  df-minusg 12972  df-subg 13134  df-nsg 13135  df-eqg 13136
This theorem is referenced by:  qussub  13201
  Copyright terms: Public domain W3C validator