ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusgrp Unicode version

Theorem qusgrp 13769
Description: If  Y is a normal subgroup of  G, then  H  =  G  /  Y is a group, called the quotient of  G by  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qusgrp.h  |-  H  =  ( G  /.s  ( G ~QG  S
) )
Assertion
Ref Expression
qusgrp  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )

Proof of Theorem qusgrp
Dummy variables  a  b  c  d  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . . 4  |-  H  =  ( G  /.s  ( G ~QG  S
) )
21a1i 9 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  =  ( G  /.s  ( G ~QG  S ) ) )
3 eqidd 2230 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( Base `  G )  =  (
Base `  G )
)
4 eqidd 2230 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 nsgsubg 13742 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
6 eqid 2229 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2229 . . . . 5  |-  ( G ~QG  S )  =  ( G ~QG  S )
86, 7eqger 13761 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
95, 8syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
10 subgrcl 13716 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
115, 10syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
12 eqid 2229 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
136, 7, 12eqgcpbl 13765 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( (
a ( G ~QG  S ) c  /\  b ( G ~QG  S ) d )  ->  ( a ( +g  `  G ) b ) ( G ~QG  S ) ( c ( +g  `  G ) d ) ) )
146, 12grpcl 13541 . . . 4  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) )  ->  (
u ( +g  `  G
) v )  e.  ( Base `  G
) )
1511, 14syl3an1 1304 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G ) )  ->  ( u ( +g  `  G ) v )  e.  (
Base `  G )
)
169adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
1711adantr 276 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  G  e.  Grp )
18 simpr1 1027 . . . . . . 7  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  u  e.  ( Base `  G )
)
19 simpr2 1028 . . . . . . 7  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  v  e.  ( Base `  G )
)
2017, 18, 19, 14syl3anc 1271 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( u
( +g  `  G ) v )  e.  (
Base `  G )
)
21 simpr3 1029 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  w  e.  ( Base `  G )
)
226, 12grpcl 13541 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( u ( +g  `  G ) v )  e.  ( Base `  G
)  /\  w  e.  ( Base `  G )
)  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  e.  (
Base `  G )
)
2317, 20, 21, 22syl3anc 1271 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  e.  (
Base `  G )
)
2416, 23erref 6700 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w ) ( G ~QG  S ) ( ( u ( +g  `  G
) v ) ( +g  `  G ) w ) )
256, 12grpass 13542 . . . . 5  |-  ( ( G  e.  Grp  /\  ( u  e.  ( Base `  G )  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G
) ) )  -> 
( ( u ( +g  `  G ) v ) ( +g  `  G ) w )  =  ( u ( +g  `  G ) ( v ( +g  `  G ) w ) ) )
2611, 25sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  =  ( u ( +g  `  G
) ( v ( +g  `  G ) w ) ) )
2724, 26breqtrd 4109 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w ) ( G ~QG  S ) ( u ( +g  `  G ) ( v ( +g  `  G ) w ) ) )
28 eqid 2229 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
296, 28grpidcl 13562 . . . 4  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
3011, 29syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( 0g `  G )  e.  (
Base `  G )
)
316, 12, 28grplid 13564 . . . . 5  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( 0g `  G ) ( +g  `  G ) u )  =  u )
3211, 31sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( +g  `  G ) u )  =  u )
339adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
34 simpr 110 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  u  e.  ( Base `  G )
)
3533, 34erref 6700 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  u ( G ~QG  S ) u )
3632, 35eqbrtrd 4105 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( +g  `  G ) u ) ( G ~QG  S ) u )
37 eqid 2229 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
386, 37grpinvcl 13581 . . . 4  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  u
)  e.  ( Base `  G ) )
3911, 38sylan 283 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( invg `  G ) `
 u )  e.  ( Base `  G
) )
406, 12, 28, 37grplinv 13583 . . . . 5  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( ( invg `  G ) `
 u ) ( +g  `  G ) u )  =  ( 0g `  G ) )
4111, 40sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( (
( invg `  G ) `  u
) ( +g  `  G
) u )  =  ( 0g `  G
) )
4230adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( 0g `  G )  e.  (
Base `  G )
)
4333, 42erref 6700 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( 0g `  G ) ( G ~QG  S ) ( 0g `  G ) )
4441, 43eqbrtrd 4105 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( (
( invg `  G ) `  u
) ( +g  `  G
) u ) ( G ~QG  S ) ( 0g
`  G ) )
452, 3, 4, 9, 11, 13, 15, 27, 30, 36, 39, 44qusgrp2 13650 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( H  e.  Grp  /\  [ ( 0g `  G ) ] ( G ~QG  S )  =  ( 0g `  H ) ) )
4645simpld 112 1  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   ` cfv 5318  (class class class)co 6001    Er wer 6677   [cec 6678   Basecbs 13032   +g cplusg 13110   0gc0g 13289    /.s cqus 13333   Grpcgrp 13533   invgcminusg 13534  SubGrpcsubg 13704  NrmSGrpcnsg 13705   ~QG cqg 13706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-er 6680  df-ec 6682  df-qs 6686  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-iimas 13335  df-qus 13336  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-grp 13536  df-minusg 13537  df-subg 13707  df-nsg 13708  df-eqg 13709
This theorem is referenced by:  qus0  13772  qusinv  13773  qusghm  13819
  Copyright terms: Public domain W3C validator