ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusgrp Unicode version

Theorem qusgrp 13302
Description: If  Y is a normal subgroup of  G, then  H  =  G  /  Y is a group, called the quotient of  G by  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qusgrp.h  |-  H  =  ( G  /.s  ( G ~QG  S
) )
Assertion
Ref Expression
qusgrp  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )

Proof of Theorem qusgrp
Dummy variables  a  b  c  d  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . . 4  |-  H  =  ( G  /.s  ( G ~QG  S
) )
21a1i 9 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  =  ( G  /.s  ( G ~QG  S ) ) )
3 eqidd 2194 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( Base `  G )  =  (
Base `  G )
)
4 eqidd 2194 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 nsgsubg 13275 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
6 eqid 2193 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2193 . . . . 5  |-  ( G ~QG  S )  =  ( G ~QG  S )
86, 7eqger 13294 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
95, 8syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
10 subgrcl 13249 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
115, 10syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
12 eqid 2193 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
136, 7, 12eqgcpbl 13298 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( (
a ( G ~QG  S ) c  /\  b ( G ~QG  S ) d )  ->  ( a ( +g  `  G ) b ) ( G ~QG  S ) ( c ( +g  `  G ) d ) ) )
146, 12grpcl 13080 . . . 4  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) )  ->  (
u ( +g  `  G
) v )  e.  ( Base `  G
) )
1511, 14syl3an1 1282 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G ) )  ->  ( u ( +g  `  G ) v )  e.  (
Base `  G )
)
169adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
1711adantr 276 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  G  e.  Grp )
18 simpr1 1005 . . . . . . 7  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  u  e.  ( Base `  G )
)
19 simpr2 1006 . . . . . . 7  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  v  e.  ( Base `  G )
)
2017, 18, 19, 14syl3anc 1249 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( u
( +g  `  G ) v )  e.  (
Base `  G )
)
21 simpr3 1007 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  w  e.  ( Base `  G )
)
226, 12grpcl 13080 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( u ( +g  `  G ) v )  e.  ( Base `  G
)  /\  w  e.  ( Base `  G )
)  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  e.  (
Base `  G )
)
2317, 20, 21, 22syl3anc 1249 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  e.  (
Base `  G )
)
2416, 23erref 6607 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w ) ( G ~QG  S ) ( ( u ( +g  `  G
) v ) ( +g  `  G ) w ) )
256, 12grpass 13081 . . . . 5  |-  ( ( G  e.  Grp  /\  ( u  e.  ( Base `  G )  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G
) ) )  -> 
( ( u ( +g  `  G ) v ) ( +g  `  G ) w )  =  ( u ( +g  `  G ) ( v ( +g  `  G ) w ) ) )
2611, 25sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  =  ( u ( +g  `  G
) ( v ( +g  `  G ) w ) ) )
2724, 26breqtrd 4055 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w ) ( G ~QG  S ) ( u ( +g  `  G ) ( v ( +g  `  G ) w ) ) )
28 eqid 2193 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
296, 28grpidcl 13101 . . . 4  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
3011, 29syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( 0g `  G )  e.  (
Base `  G )
)
316, 12, 28grplid 13103 . . . . 5  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( 0g `  G ) ( +g  `  G ) u )  =  u )
3211, 31sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( +g  `  G ) u )  =  u )
339adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
34 simpr 110 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  u  e.  ( Base `  G )
)
3533, 34erref 6607 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  u ( G ~QG  S ) u )
3632, 35eqbrtrd 4051 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( +g  `  G ) u ) ( G ~QG  S ) u )
37 eqid 2193 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
386, 37grpinvcl 13120 . . . 4  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  u
)  e.  ( Base `  G ) )
3911, 38sylan 283 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( invg `  G ) `
 u )  e.  ( Base `  G
) )
406, 12, 28, 37grplinv 13122 . . . . 5  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( ( invg `  G ) `
 u ) ( +g  `  G ) u )  =  ( 0g `  G ) )
4111, 40sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( (
( invg `  G ) `  u
) ( +g  `  G
) u )  =  ( 0g `  G
) )
4230adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( 0g `  G )  e.  (
Base `  G )
)
4333, 42erref 6607 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( 0g `  G ) ( G ~QG  S ) ( 0g `  G ) )
4441, 43eqbrtrd 4051 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( (
( invg `  G ) `  u
) ( +g  `  G
) u ) ( G ~QG  S ) ( 0g
`  G ) )
452, 3, 4, 9, 11, 13, 15, 27, 30, 36, 39, 44qusgrp2 13183 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( H  e.  Grp  /\  [ ( 0g `  G ) ] ( G ~QG  S )  =  ( 0g `  H ) ) )
4645simpld 112 1  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918    Er wer 6584   [cec 6585   Basecbs 12618   +g cplusg 12695   0gc0g 12867    /.s cqus 12883   Grpcgrp 13072   invgcminusg 13073  SubGrpcsubg 13237  NrmSGrpcnsg 13238   ~QG cqg 13239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-tp 3626  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-er 6587  df-ec 6589  df-qs 6593  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-iimas 12885  df-qus 12886  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-grp 13075  df-minusg 13076  df-subg 13240  df-nsg 13241  df-eqg 13242
This theorem is referenced by:  qus0  13305  qusinv  13306  qusghm  13352
  Copyright terms: Public domain W3C validator