ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusgrp Unicode version

Theorem qusgrp 13683
Description: If  Y is a normal subgroup of  G, then  H  =  G  /  Y is a group, called the quotient of  G by  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qusgrp.h  |-  H  =  ( G  /.s  ( G ~QG  S
) )
Assertion
Ref Expression
qusgrp  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )

Proof of Theorem qusgrp
Dummy variables  a  b  c  d  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . . 4  |-  H  =  ( G  /.s  ( G ~QG  S
) )
21a1i 9 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  =  ( G  /.s  ( G ~QG  S ) ) )
3 eqidd 2208 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( Base `  G )  =  (
Base `  G )
)
4 eqidd 2208 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 nsgsubg 13656 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
6 eqid 2207 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2207 . . . . 5  |-  ( G ~QG  S )  =  ( G ~QG  S )
86, 7eqger 13675 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
95, 8syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
10 subgrcl 13630 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
115, 10syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
12 eqid 2207 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
136, 7, 12eqgcpbl 13679 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( (
a ( G ~QG  S ) c  /\  b ( G ~QG  S ) d )  ->  ( a ( +g  `  G ) b ) ( G ~QG  S ) ( c ( +g  `  G ) d ) ) )
146, 12grpcl 13455 . . . 4  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) )  ->  (
u ( +g  `  G
) v )  e.  ( Base `  G
) )
1511, 14syl3an1 1283 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G ) )  ->  ( u ( +g  `  G ) v )  e.  (
Base `  G )
)
169adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
1711adantr 276 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  G  e.  Grp )
18 simpr1 1006 . . . . . . 7  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  u  e.  ( Base `  G )
)
19 simpr2 1007 . . . . . . 7  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  v  e.  ( Base `  G )
)
2017, 18, 19, 14syl3anc 1250 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( u
( +g  `  G ) v )  e.  (
Base `  G )
)
21 simpr3 1008 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  w  e.  ( Base `  G )
)
226, 12grpcl 13455 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( u ( +g  `  G ) v )  e.  ( Base `  G
)  /\  w  e.  ( Base `  G )
)  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  e.  (
Base `  G )
)
2317, 20, 21, 22syl3anc 1250 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  e.  (
Base `  G )
)
2416, 23erref 6663 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w ) ( G ~QG  S ) ( ( u ( +g  `  G
) v ) ( +g  `  G ) w ) )
256, 12grpass 13456 . . . . 5  |-  ( ( G  e.  Grp  /\  ( u  e.  ( Base `  G )  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G
) ) )  -> 
( ( u ( +g  `  G ) v ) ( +g  `  G ) w )  =  ( u ( +g  `  G ) ( v ( +g  `  G ) w ) ) )
2611, 25sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  =  ( u ( +g  `  G
) ( v ( +g  `  G ) w ) ) )
2724, 26breqtrd 4085 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w ) ( G ~QG  S ) ( u ( +g  `  G ) ( v ( +g  `  G ) w ) ) )
28 eqid 2207 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
296, 28grpidcl 13476 . . . 4  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
3011, 29syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( 0g `  G )  e.  (
Base `  G )
)
316, 12, 28grplid 13478 . . . . 5  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( 0g `  G ) ( +g  `  G ) u )  =  u )
3211, 31sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( +g  `  G ) u )  =  u )
339adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
34 simpr 110 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  u  e.  ( Base `  G )
)
3533, 34erref 6663 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  u ( G ~QG  S ) u )
3632, 35eqbrtrd 4081 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( +g  `  G ) u ) ( G ~QG  S ) u )
37 eqid 2207 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
386, 37grpinvcl 13495 . . . 4  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  u
)  e.  ( Base `  G ) )
3911, 38sylan 283 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( invg `  G ) `
 u )  e.  ( Base `  G
) )
406, 12, 28, 37grplinv 13497 . . . . 5  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( ( invg `  G ) `
 u ) ( +g  `  G ) u )  =  ( 0g `  G ) )
4111, 40sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( (
( invg `  G ) `  u
) ( +g  `  G
) u )  =  ( 0g `  G
) )
4230adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( 0g `  G )  e.  (
Base `  G )
)
4333, 42erref 6663 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( 0g `  G ) ( G ~QG  S ) ( 0g `  G ) )
4441, 43eqbrtrd 4081 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( (
( invg `  G ) `  u
) ( +g  `  G
) u ) ( G ~QG  S ) ( 0g
`  G ) )
452, 3, 4, 9, 11, 13, 15, 27, 30, 36, 39, 44qusgrp2 13564 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( H  e.  Grp  /\  [ ( 0g `  G ) ] ( G ~QG  S )  =  ( 0g `  H ) ) )
4645simpld 112 1  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967    Er wer 6640   [cec 6641   Basecbs 12947   +g cplusg 13024   0gc0g 13203    /.s cqus 13247   Grpcgrp 13447   invgcminusg 13448  SubGrpcsubg 13618  NrmSGrpcnsg 13619   ~QG cqg 13620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-tp 3651  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-er 6643  df-ec 6645  df-qs 6649  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-iimas 13249  df-qus 13250  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-grp 13450  df-minusg 13451  df-subg 13621  df-nsg 13622  df-eqg 13623
This theorem is referenced by:  qus0  13686  qusinv  13687  qusghm  13733
  Copyright terms: Public domain W3C validator