ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusgrp Unicode version

Theorem qusgrp 13196
Description: If  Y is a normal subgroup of  G, then  H  =  G  /  Y is a group, called the quotient of  G by  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qusgrp.h  |-  H  =  ( G  /.s  ( G ~QG  S
) )
Assertion
Ref Expression
qusgrp  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )

Proof of Theorem qusgrp
Dummy variables  a  b  c  d  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . . 4  |-  H  =  ( G  /.s  ( G ~QG  S
) )
21a1i 9 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  =  ( G  /.s  ( G ~QG  S ) ) )
3 eqidd 2190 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( Base `  G )  =  (
Base `  G )
)
4 eqidd 2190 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 nsgsubg 13169 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
6 eqid 2189 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2189 . . . . 5  |-  ( G ~QG  S )  =  ( G ~QG  S )
86, 7eqger 13188 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
95, 8syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
10 subgrcl 13143 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
115, 10syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
12 eqid 2189 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
136, 7, 12eqgcpbl 13192 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( (
a ( G ~QG  S ) c  /\  b ( G ~QG  S ) d )  ->  ( a ( +g  `  G ) b ) ( G ~QG  S ) ( c ( +g  `  G ) d ) ) )
146, 12grpcl 12976 . . . 4  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) )  ->  (
u ( +g  `  G
) v )  e.  ( Base `  G
) )
1511, 14syl3an1 1282 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G ) )  ->  ( u ( +g  `  G ) v )  e.  (
Base `  G )
)
169adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
1711adantr 276 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  G  e.  Grp )
18 simpr1 1005 . . . . . . 7  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  u  e.  ( Base `  G )
)
19 simpr2 1006 . . . . . . 7  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  v  e.  ( Base `  G )
)
2017, 18, 19, 14syl3anc 1249 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( u
( +g  `  G ) v )  e.  (
Base `  G )
)
21 simpr3 1007 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  w  e.  ( Base `  G )
)
226, 12grpcl 12976 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( u ( +g  `  G ) v )  e.  ( Base `  G
)  /\  w  e.  ( Base `  G )
)  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  e.  (
Base `  G )
)
2317, 20, 21, 22syl3anc 1249 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  e.  (
Base `  G )
)
2416, 23erref 6583 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w ) ( G ~QG  S ) ( ( u ( +g  `  G
) v ) ( +g  `  G ) w ) )
256, 12grpass 12977 . . . . 5  |-  ( ( G  e.  Grp  /\  ( u  e.  ( Base `  G )  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G
) ) )  -> 
( ( u ( +g  `  G ) v ) ( +g  `  G ) w )  =  ( u ( +g  `  G ) ( v ( +g  `  G ) w ) ) )
2611, 25sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  =  ( u ( +g  `  G
) ( v ( +g  `  G ) w ) ) )
2724, 26breqtrd 4047 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w ) ( G ~QG  S ) ( u ( +g  `  G ) ( v ( +g  `  G ) w ) ) )
28 eqid 2189 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
296, 28grpidcl 12996 . . . 4  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
3011, 29syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( 0g `  G )  e.  (
Base `  G )
)
316, 12, 28grplid 12998 . . . . 5  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( 0g `  G ) ( +g  `  G ) u )  =  u )
3211, 31sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( +g  `  G ) u )  =  u )
339adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
34 simpr 110 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  u  e.  ( Base `  G )
)
3533, 34erref 6583 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  u ( G ~QG  S ) u )
3632, 35eqbrtrd 4043 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( +g  `  G ) u ) ( G ~QG  S ) u )
37 eqid 2189 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
386, 37grpinvcl 13015 . . . 4  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  u
)  e.  ( Base `  G ) )
3911, 38sylan 283 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( invg `  G ) `
 u )  e.  ( Base `  G
) )
406, 12, 28, 37grplinv 13017 . . . . 5  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( ( invg `  G ) `
 u ) ( +g  `  G ) u )  =  ( 0g `  G ) )
4111, 40sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( (
( invg `  G ) `  u
) ( +g  `  G
) u )  =  ( 0g `  G
) )
4230adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( 0g `  G )  e.  (
Base `  G )
)
4333, 42erref 6583 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( 0g `  G ) ( G ~QG  S ) ( 0g `  G ) )
4441, 43eqbrtrd 4043 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( (
( invg `  G ) `  u
) ( +g  `  G
) u ) ( G ~QG  S ) ( 0g
`  G ) )
452, 3, 4, 9, 11, 13, 15, 27, 30, 36, 39, 44qusgrp2 13078 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( H  e.  Grp  /\  [ ( 0g `  G ) ] ( G ~QG  S )  =  ( 0g `  H ) ) )
4645simpld 112 1  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2160   ` cfv 5238  (class class class)co 5900    Er wer 6560   [cec 6561   Basecbs 12523   +g cplusg 12600   0gc0g 12772    /.s cqus 12788   Grpcgrp 12968   invgcminusg 12969  SubGrpcsubg 13131  NrmSGrpcnsg 13132   ~QG cqg 13133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-coll 4136  ax-sep 4139  ax-pow 4195  ax-pr 4230  ax-un 4454  ax-setind 4557  ax-cnex 7937  ax-resscn 7938  ax-1cn 7939  ax-1re 7940  ax-icn 7941  ax-addcl 7942  ax-addrcl 7943  ax-mulcl 7944  ax-addcom 7946  ax-addass 7948  ax-i2m1 7951  ax-0lt1 7952  ax-0id 7954  ax-rnegex 7955  ax-pre-ltirr 7958  ax-pre-lttrn 7960  ax-pre-ltadd 7962
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rmo 2476  df-rab 2477  df-v 2754  df-sbc 2978  df-csb 3073  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-nul 3438  df-pw 3595  df-sn 3616  df-pr 3617  df-tp 3618  df-op 3619  df-uni 3828  df-int 3863  df-iun 3906  df-br 4022  df-opab 4083  df-mpt 4084  df-id 4314  df-xp 4653  df-rel 4654  df-cnv 4655  df-co 4656  df-dm 4657  df-rn 4658  df-res 4659  df-ima 4660  df-iota 5199  df-fun 5240  df-fn 5241  df-f 5242  df-f1 5243  df-fo 5244  df-f1o 5245  df-fv 5246  df-riota 5855  df-ov 5903  df-oprab 5904  df-mpo 5905  df-er 6563  df-ec 6565  df-qs 6569  df-pnf 8029  df-mnf 8030  df-ltxr 8032  df-inn 8955  df-2 9013  df-3 9014  df-ndx 12526  df-slot 12527  df-base 12529  df-sets 12530  df-iress 12531  df-plusg 12613  df-mulr 12614  df-0g 12774  df-iimas 12790  df-qus 12791  df-mgm 12843  df-sgrp 12888  df-mnd 12901  df-grp 12971  df-minusg 12972  df-subg 13134  df-nsg 13135  df-eqg 13136
This theorem is referenced by:  qus0  13199  qusinv  13200  qusghm  13246
  Copyright terms: Public domain W3C validator