ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qusgrp Unicode version

Theorem qusgrp 13362
Description: If  Y is a normal subgroup of  G, then  H  =  G  /  Y is a group, called the quotient of  G by  Y. (Contributed by Mario Carneiro, 14-Jun-2015.) (Revised by Mario Carneiro, 12-Aug-2015.)
Hypothesis
Ref Expression
qusgrp.h  |-  H  =  ( G  /.s  ( G ~QG  S
) )
Assertion
Ref Expression
qusgrp  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )

Proof of Theorem qusgrp
Dummy variables  a  b  c  d  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . . 4  |-  H  =  ( G  /.s  ( G ~QG  S
) )
21a1i 9 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  =  ( G  /.s  ( G ~QG  S ) ) )
3 eqidd 2197 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( Base `  G )  =  (
Base `  G )
)
4 eqidd 2197 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( +g  `  G )  =  ( +g  `  G ) )
5 nsgsubg 13335 . . . 4  |-  ( S  e.  (NrmSGrp `  G
)  ->  S  e.  (SubGrp `  G ) )
6 eqid 2196 . . . . 5  |-  ( Base `  G )  =  (
Base `  G )
7 eqid 2196 . . . . 5  |-  ( G ~QG  S )  =  ( G ~QG  S )
86, 7eqger 13354 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
95, 8syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
10 subgrcl 13309 . . . 4  |-  ( S  e.  (SubGrp `  G
)  ->  G  e.  Grp )
115, 10syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  G  e.  Grp )
12 eqid 2196 . . . 4  |-  ( +g  `  G )  =  ( +g  `  G )
136, 7, 12eqgcpbl 13358 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( (
a ( G ~QG  S ) c  /\  b ( G ~QG  S ) d )  ->  ( a ( +g  `  G ) b ) ( G ~QG  S ) ( c ( +g  `  G ) d ) ) )
146, 12grpcl 13140 . . . 4  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G
) )  ->  (
u ( +g  `  G
) v )  e.  ( Base `  G
) )
1511, 14syl3an1 1282 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )  /\  v  e.  ( Base `  G ) )  ->  ( u ( +g  `  G ) v )  e.  (
Base `  G )
)
169adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
1711adantr 276 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  G  e.  Grp )
18 simpr1 1005 . . . . . . 7  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  u  e.  ( Base `  G )
)
19 simpr2 1006 . . . . . . 7  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  v  e.  ( Base `  G )
)
2017, 18, 19, 14syl3anc 1249 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( u
( +g  `  G ) v )  e.  (
Base `  G )
)
21 simpr3 1007 . . . . . 6  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  w  e.  ( Base `  G )
)
226, 12grpcl 13140 . . . . . 6  |-  ( ( G  e.  Grp  /\  ( u ( +g  `  G ) v )  e.  ( Base `  G
)  /\  w  e.  ( Base `  G )
)  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  e.  (
Base `  G )
)
2317, 20, 21, 22syl3anc 1249 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  e.  (
Base `  G )
)
2416, 23erref 6612 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w ) ( G ~QG  S ) ( ( u ( +g  `  G
) v ) ( +g  `  G ) w ) )
256, 12grpass 13141 . . . . 5  |-  ( ( G  e.  Grp  /\  ( u  e.  ( Base `  G )  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G
) ) )  -> 
( ( u ( +g  `  G ) v ) ( +g  `  G ) w )  =  ( u ( +g  `  G ) ( v ( +g  `  G ) w ) ) )
2611, 25sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w )  =  ( u ( +g  `  G
) ( v ( +g  `  G ) w ) ) )
2724, 26breqtrd 4059 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  ( u  e.  ( Base `  G
)  /\  v  e.  ( Base `  G )  /\  w  e.  ( Base `  G ) ) )  ->  ( (
u ( +g  `  G
) v ) ( +g  `  G ) w ) ( G ~QG  S ) ( u ( +g  `  G ) ( v ( +g  `  G ) w ) ) )
28 eqid 2196 . . . . 5  |-  ( 0g
`  G )  =  ( 0g `  G
)
296, 28grpidcl 13161 . . . 4  |-  ( G  e.  Grp  ->  ( 0g `  G )  e.  ( Base `  G
) )
3011, 29syl 14 . . 3  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( 0g `  G )  e.  (
Base `  G )
)
316, 12, 28grplid 13163 . . . . 5  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( 0g `  G ) ( +g  `  G ) u )  =  u )
3211, 31sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( +g  `  G ) u )  =  u )
339adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( G ~QG  S
)  Er  ( Base `  G ) )
34 simpr 110 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  u  e.  ( Base `  G )
)
3533, 34erref 6612 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  u ( G ~QG  S ) u )
3632, 35eqbrtrd 4055 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( 0g `  G ) ( +g  `  G ) u ) ( G ~QG  S ) u )
37 eqid 2196 . . . . 5  |-  ( invg `  G )  =  ( invg `  G )
386, 37grpinvcl 13180 . . . 4  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( invg `  G ) `  u
)  e.  ( Base `  G ) )
3911, 38sylan 283 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( ( invg `  G ) `
 u )  e.  ( Base `  G
) )
406, 12, 28, 37grplinv 13182 . . . . 5  |-  ( ( G  e.  Grp  /\  u  e.  ( Base `  G ) )  -> 
( ( ( invg `  G ) `
 u ) ( +g  `  G ) u )  =  ( 0g `  G ) )
4111, 40sylan 283 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( (
( invg `  G ) `  u
) ( +g  `  G
) u )  =  ( 0g `  G
) )
4230adantr 276 . . . . 5  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( 0g `  G )  e.  (
Base `  G )
)
4333, 42erref 6612 . . . 4  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( 0g `  G ) ( G ~QG  S ) ( 0g `  G ) )
4441, 43eqbrtrd 4055 . . 3  |-  ( ( S  e.  (NrmSGrp `  G
)  /\  u  e.  ( Base `  G )
)  ->  ( (
( invg `  G ) `  u
) ( +g  `  G
) u ) ( G ~QG  S ) ( 0g
`  G ) )
452, 3, 4, 9, 11, 13, 15, 27, 30, 36, 39, 44qusgrp2 13243 . 2  |-  ( S  e.  (NrmSGrp `  G
)  ->  ( H  e.  Grp  /\  [ ( 0g `  G ) ] ( G ~QG  S )  =  ( 0g `  H ) ) )
4645simpld 112 1  |-  ( S  e.  (NrmSGrp `  G
)  ->  H  e.  Grp )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5258  (class class class)co 5922    Er wer 6589   [cec 6590   Basecbs 12678   +g cplusg 12755   0gc0g 12927    /.s cqus 12943   Grpcgrp 13132   invgcminusg 13133  SubGrpcsubg 13297  NrmSGrpcnsg 13298   ~QG cqg 13299
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-pre-ltirr 7991  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-tp 3630  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-er 6592  df-ec 6594  df-qs 6598  df-pnf 8063  df-mnf 8064  df-ltxr 8066  df-inn 8991  df-2 9049  df-3 9050  df-ndx 12681  df-slot 12682  df-base 12684  df-sets 12685  df-iress 12686  df-plusg 12768  df-mulr 12769  df-0g 12929  df-iimas 12945  df-qus 12946  df-mgm 12999  df-sgrp 13045  df-mnd 13058  df-grp 13135  df-minusg 13136  df-subg 13300  df-nsg 13301  df-eqg 13302
This theorem is referenced by:  qus0  13365  qusinv  13366  qusghm  13412
  Copyright terms: Public domain W3C validator