| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qus0 | GIF version | ||
| Description: Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| qusgrp.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
| qus0.p | ⊢ 0 = (0g‘𝐺) |
| Ref | Expression |
|---|---|
| qus0 | ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg 13728 | . . . . . . 7 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | subgrcl 13702 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 14 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
| 4 | eqid 2229 | . . . . . . 7 ⊢ (Base‘𝐺) = (Base‘𝐺) | |
| 5 | qus0.p | . . . . . . 7 ⊢ 0 = (0g‘𝐺) | |
| 6 | 4, 5 | grpidcl 13548 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺)) |
| 7 | 3, 6 | syl 14 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 0 ∈ (Base‘𝐺)) |
| 8 | qusgrp.h | . . . . . 6 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) | |
| 9 | eqid 2229 | . . . . . 6 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 10 | eqid 2229 | . . . . . 6 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 11 | 8, 4, 9, 10 | qusadd 13757 | . . . . 5 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g‘𝐺) 0 )](𝐺 ~QG 𝑆)) |
| 12 | 7, 7, 11 | mpd3an23 1373 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g‘𝐺) 0 )](𝐺 ~QG 𝑆)) |
| 13 | 4, 9, 5 | grplid 13550 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 14 | 3, 7, 13 | syl2anc 411 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ( 0 (+g‘𝐺) 0 ) = 0 ) |
| 15 | 14 | eceq1d 6706 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [( 0 (+g‘𝐺) 0 )](𝐺 ~QG 𝑆) = [ 0 ](𝐺 ~QG 𝑆)) |
| 16 | 12, 15 | eqtrd 2262 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆)) |
| 17 | 8 | qusgrp 13755 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
| 18 | eqid 2229 | . . . . . 6 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 19 | 8, 4, 18 | quseccl 13756 | . . . . 5 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 20 | 7, 19 | mpdan 421 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 21 | eqid 2229 | . . . . 5 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 22 | 18, 10, 21 | grpid 13558 | . . . 4 ⊢ ((𝐻 ∈ Grp ∧ [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → (([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g‘𝐻) = [ 0 ](𝐺 ~QG 𝑆))) |
| 23 | 17, 20, 22 | syl2anc 411 | . . 3 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (([ 0 ](𝐺 ~QG 𝑆)(+g‘𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g‘𝐻) = [ 0 ](𝐺 ~QG 𝑆))) |
| 24 | 16, 23 | mpbid 147 | . 2 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → (0g‘𝐻) = [ 0 ](𝐺 ~QG 𝑆)) |
| 25 | 24 | eqcomd 2235 | 1 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1395 ∈ wcel 2200 ‘cfv 5314 (class class class)co 5994 [cec 6668 Basecbs 13018 +gcplusg 13096 0gc0g 13275 /s cqus 13319 Grpcgrp 13519 SubGrpcsubg 13690 NrmSGrpcnsg 13691 ~QG cqg 13692 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-pre-ltirr 8099 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4381 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-er 6670 df-ec 6672 df-qs 6676 df-pnf 8171 df-mnf 8172 df-ltxr 8174 df-inn 9099 df-2 9157 df-3 9158 df-ndx 13021 df-slot 13022 df-base 13024 df-sets 13025 df-iress 13026 df-plusg 13109 df-mulr 13110 df-0g 13277 df-iimas 13321 df-qus 13322 df-mgm 13375 df-sgrp 13421 df-mnd 13436 df-grp 13522 df-minusg 13523 df-subg 13693 df-nsg 13694 df-eqg 13695 |
| This theorem is referenced by: qusinv 13759 |
| Copyright terms: Public domain | W3C validator |