ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qus0 GIF version

Theorem qus0 13780
Description: Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qus0.p 0 = (0g𝐺)
Assertion
Ref Expression
qus0 (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g𝐻))

Proof of Theorem qus0
StepHypRef Expression
1 nsgsubg 13750 . . . . . . 7 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 subgrcl 13724 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 14 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
4 eqid 2229 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5 qus0.p . . . . . . 7 0 = (0g𝐺)
64, 5grpidcl 13570 . . . . . 6 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
73, 6syl 14 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → 0 ∈ (Base‘𝐺))
8 qusgrp.h . . . . . 6 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
9 eqid 2229 . . . . . 6 (+g𝐺) = (+g𝐺)
10 eqid 2229 . . . . . 6 (+g𝐻) = (+g𝐻)
118, 4, 9, 10qusadd 13779 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g𝐺) 0 )](𝐺 ~QG 𝑆))
127, 7, 11mpd3an23 1373 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g𝐺) 0 )](𝐺 ~QG 𝑆))
134, 9, 5grplid 13572 . . . . . 6 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
143, 7, 13syl2anc 411 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → ( 0 (+g𝐺) 0 ) = 0 )
1514eceq1d 6724 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → [( 0 (+g𝐺) 0 )](𝐺 ~QG 𝑆) = [ 0 ](𝐺 ~QG 𝑆))
1612, 15eqtrd 2262 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆))
178qusgrp 13777 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
18 eqid 2229 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
198, 4, 18quseccl 13778 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
207, 19mpdan 421 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
21 eqid 2229 . . . . 5 (0g𝐻) = (0g𝐻)
2218, 10, 21grpid 13580 . . . 4 ((𝐻 ∈ Grp ∧ [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → (([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g𝐻) = [ 0 ](𝐺 ~QG 𝑆)))
2317, 20, 22syl2anc 411 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g𝐻) = [ 0 ](𝐺 ~QG 𝑆)))
2416, 23mpbid 147 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (0g𝐻) = [ 0 ](𝐺 ~QG 𝑆))
2524eqcomd 2235 1 (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g𝐻))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6007  [cec 6686  Basecbs 13040  +gcplusg 13118  0gc0g 13297   /s cqus 13341  Grpcgrp 13541  SubGrpcsubg 13712  NrmSGrpcnsg 13713   ~QG cqg 13714
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-tp 3674  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-er 6688  df-ec 6690  df-qs 6694  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-iress 13048  df-plusg 13131  df-mulr 13132  df-0g 13299  df-iimas 13343  df-qus 13344  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-subg 13715  df-nsg 13716  df-eqg 13717
This theorem is referenced by:  qusinv  13781
  Copyright terms: Public domain W3C validator