| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qusinv | GIF version | ||
| Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| qusgrp.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
| qusinv.v | ⊢ 𝑉 = (Base‘𝐺) |
| qusinv.i | ⊢ 𝐼 = (invg‘𝐺) |
| qusinv.n | ⊢ 𝑁 = (invg‘𝐻) |
| Ref | Expression |
|---|---|
| qusinv | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nsgsubg 13411 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 2 | subgrcl 13385 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
| 4 | qusinv.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝐺) | |
| 5 | qusinv.i | . . . . . 6 ⊢ 𝐼 = (invg‘𝐺) | |
| 6 | 4, 5 | grpinvcl 13250 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝐼‘𝑋) ∈ 𝑉) |
| 7 | 3, 6 | sylan 283 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝐼‘𝑋) ∈ 𝑉) |
| 8 | qusgrp.h | . . . . 5 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) | |
| 9 | eqid 2196 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 10 | eqid 2196 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 11 | 8, 4, 9, 10 | qusadd 13440 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ (𝐼‘𝑋) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)(𝐼‘𝑋))](𝐺 ~QG 𝑆)) |
| 12 | 7, 11 | mpd3an3 1349 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)(𝐼‘𝑋))](𝐺 ~QG 𝑆)) |
| 13 | eqid 2196 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
| 14 | 4, 9, 13, 5 | grprinv 13253 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = (0g‘𝐺)) |
| 15 | 3, 14 | sylan 283 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = (0g‘𝐺)) |
| 16 | 15 | eceq1d 6637 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [(𝑋(+g‘𝐺)(𝐼‘𝑋))](𝐺 ~QG 𝑆) = [(0g‘𝐺)](𝐺 ~QG 𝑆)) |
| 17 | 8, 13 | qus0 13441 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [(0g‘𝐺)](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
| 18 | 17 | adantr 276 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [(0g‘𝐺)](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
| 19 | 12, 16, 18 | 3eqtrd 2233 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = (0g‘𝐻)) |
| 20 | 8 | qusgrp 13438 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
| 21 | 20 | adantr 276 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → 𝐻 ∈ Grp) |
| 22 | eqid 2196 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 23 | 8, 4, 22 | quseccl 13439 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 24 | 8, 4, 22 | quseccl 13439 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐼‘𝑋) ∈ 𝑉) → [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 25 | 7, 24 | syldan 282 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 26 | eqid 2196 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
| 27 | qusinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐻) | |
| 28 | 22, 10, 26, 27 | grpinvid1 13254 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = (0g‘𝐻))) |
| 29 | 21, 23, 25, 28 | syl3anc 1249 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = (0g‘𝐻))) |
| 30 | 19, 29 | mpbird 167 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ‘cfv 5259 (class class class)co 5925 [cec 6599 Basecbs 12703 +gcplusg 12780 0gc0g 12958 /s cqus 13002 Grpcgrp 13202 invgcminusg 13203 SubGrpcsubg 13373 NrmSGrpcnsg 13374 ~QG cqg 13375 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-pre-ltirr 8008 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-tp 3631 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-er 6601 df-ec 6603 df-qs 6607 df-pnf 8080 df-mnf 8081 df-ltxr 8083 df-inn 9008 df-2 9066 df-3 9067 df-ndx 12706 df-slot 12707 df-base 12709 df-sets 12710 df-iress 12711 df-plusg 12793 df-mulr 12794 df-0g 12960 df-iimas 13004 df-qus 13005 df-mgm 13058 df-sgrp 13104 df-mnd 13119 df-grp 13205 df-minusg 13206 df-subg 13376 df-nsg 13377 df-eqg 13378 |
| This theorem is referenced by: qussub 13443 |
| Copyright terms: Public domain | W3C validator |