![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qusinv | GIF version |
Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
Ref | Expression |
---|---|
qusgrp.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
qusinv.v | ⊢ 𝑉 = (Base‘𝐺) |
qusinv.i | ⊢ 𝐼 = (invg‘𝐺) |
qusinv.n | ⊢ 𝑁 = (invg‘𝐻) |
Ref | Expression |
---|---|
qusinv | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nsgsubg 13169 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
2 | subgrcl 13143 | . . . . . 6 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
3 | 1, 2 | syl 14 | . . . . 5 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
4 | qusinv.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝐺) | |
5 | qusinv.i | . . . . . 6 ⊢ 𝐼 = (invg‘𝐺) | |
6 | 4, 5 | grpinvcl 13015 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝐼‘𝑋) ∈ 𝑉) |
7 | 3, 6 | sylan 283 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝐼‘𝑋) ∈ 𝑉) |
8 | qusgrp.h | . . . . 5 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) | |
9 | eqid 2189 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
10 | eqid 2189 | . . . . 5 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
11 | 8, 4, 9, 10 | qusadd 13198 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ (𝐼‘𝑋) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)(𝐼‘𝑋))](𝐺 ~QG 𝑆)) |
12 | 7, 11 | mpd3an3 1349 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)(𝐼‘𝑋))](𝐺 ~QG 𝑆)) |
13 | eqid 2189 | . . . . . 6 ⊢ (0g‘𝐺) = (0g‘𝐺) | |
14 | 4, 9, 13, 5 | grprinv 13018 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝑋 ∈ 𝑉) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = (0g‘𝐺)) |
15 | 3, 14 | sylan 283 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑋(+g‘𝐺)(𝐼‘𝑋)) = (0g‘𝐺)) |
16 | 15 | eceq1d 6599 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [(𝑋(+g‘𝐺)(𝐼‘𝑋))](𝐺 ~QG 𝑆) = [(0g‘𝐺)](𝐺 ~QG 𝑆)) |
17 | 8, 13 | qus0 13199 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → [(0g‘𝐺)](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
18 | 17 | adantr 276 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [(0g‘𝐺)](𝐺 ~QG 𝑆) = (0g‘𝐻)) |
19 | 12, 16, 18 | 3eqtrd 2226 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = (0g‘𝐻)) |
20 | 8 | qusgrp 13196 | . . . 4 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp) |
21 | 20 | adantr 276 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → 𝐻 ∈ Grp) |
22 | eqid 2189 | . . . 4 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
23 | 8, 4, 22 | quseccl 13197 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
24 | 8, 4, 22 | quseccl 13197 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐼‘𝑋) ∈ 𝑉) → [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
25 | 7, 24 | syldan 282 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
26 | eqid 2189 | . . . 4 ⊢ (0g‘𝐻) = (0g‘𝐻) | |
27 | qusinv.n | . . . 4 ⊢ 𝑁 = (invg‘𝐻) | |
28 | 22, 10, 26, 27 | grpinvid1 13019 | . . 3 ⊢ ((𝐻 ∈ Grp ∧ [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = (0g‘𝐻))) |
29 | 21, 23, 25, 28 | syl3anc 1249 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[(𝐼‘𝑋)](𝐺 ~QG 𝑆)) = (0g‘𝐻))) |
30 | 19, 29 | mpbird 167 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼‘𝑋)](𝐺 ~QG 𝑆)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2160 ‘cfv 5238 (class class class)co 5900 [cec 6561 Basecbs 12523 +gcplusg 12600 0gc0g 12772 /s cqus 12788 Grpcgrp 12968 invgcminusg 12969 SubGrpcsubg 13131 NrmSGrpcnsg 13132 ~QG cqg 13133 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-coll 4136 ax-sep 4139 ax-pow 4195 ax-pr 4230 ax-un 4454 ax-setind 4557 ax-cnex 7937 ax-resscn 7938 ax-1cn 7939 ax-1re 7940 ax-icn 7941 ax-addcl 7942 ax-addrcl 7943 ax-mulcl 7944 ax-addcom 7946 ax-addass 7948 ax-i2m1 7951 ax-0lt1 7952 ax-0id 7954 ax-rnegex 7955 ax-pre-ltirr 7958 ax-pre-lttrn 7960 ax-pre-ltadd 7962 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-nel 2456 df-ral 2473 df-rex 2474 df-reu 2475 df-rmo 2476 df-rab 2477 df-v 2754 df-sbc 2978 df-csb 3073 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-nul 3438 df-pw 3595 df-sn 3616 df-pr 3617 df-tp 3618 df-op 3619 df-uni 3828 df-int 3863 df-iun 3906 df-br 4022 df-opab 4083 df-mpt 4084 df-id 4314 df-xp 4653 df-rel 4654 df-cnv 4655 df-co 4656 df-dm 4657 df-rn 4658 df-res 4659 df-ima 4660 df-iota 5199 df-fun 5240 df-fn 5241 df-f 5242 df-f1 5243 df-fo 5244 df-f1o 5245 df-fv 5246 df-riota 5855 df-ov 5903 df-oprab 5904 df-mpo 5905 df-er 6563 df-ec 6565 df-qs 6569 df-pnf 8029 df-mnf 8030 df-ltxr 8032 df-inn 8955 df-2 9013 df-3 9014 df-ndx 12526 df-slot 12527 df-base 12529 df-sets 12530 df-iress 12531 df-plusg 12613 df-mulr 12614 df-0g 12774 df-iimas 12790 df-qus 12791 df-mgm 12843 df-sgrp 12888 df-mnd 12901 df-grp 12971 df-minusg 12972 df-subg 13134 df-nsg 13135 df-eqg 13136 |
This theorem is referenced by: qussub 13201 |
Copyright terms: Public domain | W3C validator |