ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qussub GIF version

Theorem qussub 13491
Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qusinv.v 𝑉 = (Base‘𝐺)
qussub.p = (-g𝐺)
qussub.a 𝑁 = (-g𝐻)
Assertion
Ref Expression
qussub ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))

Proof of Theorem qussub
StepHypRef Expression
1 qusgrp.h . . . . 5 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
2 qusinv.v . . . . 5 𝑉 = (Base‘𝐺)
3 eqid 2204 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
41, 2, 3quseccl 13487 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
543adant3 1019 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
61, 2, 3quseccl 13487 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
7 eqid 2204 . . . 4 (+g𝐻) = (+g𝐻)
8 eqid 2204 . . . 4 (invg𝐻) = (invg𝐻)
9 qussub.a . . . 4 𝑁 = (-g𝐻)
103, 7, 8, 9grpsubval 13296 . . 3 (([𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))))
115, 6, 103imp3i2an 1185 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))))
12 eqid 2204 . . . . 5 (invg𝐺) = (invg𝐺)
131, 2, 12, 8qusinv 13490 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → ((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆))
14133adant2 1018 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆))
1514oveq2d 5950 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)))
16 nsgsubg 13459 . . . . . . 7 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
17 subgrcl 13433 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1816, 17syl 14 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
192, 12grpinvcl 13298 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
2018, 19sylan 283 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
21203adant2 1018 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
22 eqid 2204 . . . . 5 (+g𝐺) = (+g𝐺)
231, 2, 22, 7qusadd 13488 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉 ∧ ((invg𝐺)‘𝑌) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
2421, 23syld3an3 1294 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
25 qussub.p . . . . . 6 = (-g𝐺)
262, 22, 12, 25grpsubval 13296 . . . . 5 ((𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
27263adant1 1017 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2827eceq1d 6646 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → [(𝑋 𝑌)](𝐺 ~QG 𝑆) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
2924, 28eqtr4d 2240 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))
3011, 15, 293eqtrd 2241 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 980   = wceq 1372  wcel 2175  cfv 5268  (class class class)co 5934  [cec 6608  Basecbs 12751  +gcplusg 12828   /s cqus 13050  Grpcgrp 13250  invgcminusg 13251  -gcsg 13252  SubGrpcsubg 13421  NrmSGrpcnsg 13422   ~QG cqg 13423
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-cnex 7998  ax-resscn 7999  ax-1cn 8000  ax-1re 8001  ax-icn 8002  ax-addcl 8003  ax-addrcl 8004  ax-mulcl 8005  ax-addcom 8007  ax-addass 8009  ax-i2m1 8012  ax-0lt1 8013  ax-0id 8015  ax-rnegex 8016  ax-pre-ltirr 8019  ax-pre-lttrn 8021  ax-pre-ltadd 8023
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-tp 3640  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4338  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-riota 5889  df-ov 5937  df-oprab 5938  df-mpo 5939  df-1st 6216  df-2nd 6217  df-er 6610  df-ec 6612  df-qs 6616  df-pnf 8091  df-mnf 8092  df-ltxr 8094  df-inn 9019  df-2 9077  df-3 9078  df-ndx 12754  df-slot 12755  df-base 12757  df-sets 12758  df-iress 12759  df-plusg 12841  df-mulr 12842  df-0g 13008  df-iimas 13052  df-qus 13053  df-mgm 13106  df-sgrp 13152  df-mnd 13167  df-grp 13253  df-minusg 13254  df-sbg 13255  df-subg 13424  df-nsg 13425  df-eqg 13426
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator