| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qussub | GIF version | ||
| Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| qusgrp.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
| qusinv.v | ⊢ 𝑉 = (Base‘𝐺) |
| qussub.p | ⊢ − = (-g‘𝐺) |
| qussub.a | ⊢ 𝑁 = (-g‘𝐻) |
| Ref | Expression |
|---|---|
| qussub | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | . . . . 5 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) | |
| 2 | qusinv.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐺) | |
| 3 | eqid 2229 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 4 | 1, 2, 3 | quseccl 13765 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 5 | 4 | 3adant3 1041 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 6 | 1, 2, 3 | quseccl 13765 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 7 | eqid 2229 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 8 | eqid 2229 | . . . 4 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
| 9 | qussub.a | . . . 4 ⊢ 𝑁 = (-g‘𝐻) | |
| 10 | 3, 7, 8, 9 | grpsubval 13574 | . . 3 ⊢ (([𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)))) |
| 11 | 5, 6, 10 | 3imp3i2an 1207 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)))) |
| 12 | eqid 2229 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 13 | 1, 2, 12, 8 | qusinv 13768 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) |
| 14 | 13 | 3adant2 1040 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) |
| 15 | 14 | oveq2d 6016 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆))) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆))) |
| 16 | nsgsubg 13737 | . . . . . . 7 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 17 | subgrcl 13711 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 18 | 16, 17 | syl 14 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
| 19 | 2, 12 | grpinvcl 13576 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
| 20 | 18, 19 | sylan 283 | . . . . 5 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
| 21 | 20 | 3adant2 1040 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
| 22 | eqid 2229 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 23 | 1, 2, 22, 7 | qusadd 13766 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
| 24 | 21, 23 | syld3an3 1316 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
| 25 | qussub.p | . . . . . 6 ⊢ − = (-g‘𝐺) | |
| 26 | 2, 22, 12, 25 | grpsubval 13574 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 27 | 26 | 3adant1 1039 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 28 | 27 | eceq1d 6714 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → [(𝑋 − 𝑌)](𝐺 ~QG 𝑆) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
| 29 | 24, 28 | eqtr4d 2265 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
| 30 | 11, 15, 29 | 3eqtrd 2266 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5317 (class class class)co 6000 [cec 6676 Basecbs 13027 +gcplusg 13105 /s cqus 13328 Grpcgrp 13528 invgcminusg 13529 -gcsg 13530 SubGrpcsubg 13699 NrmSGrpcnsg 13700 ~QG cqg 13701 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-pre-ltirr 8107 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-tp 3674 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-1st 6284 df-2nd 6285 df-er 6678 df-ec 6680 df-qs 6684 df-pnf 8179 df-mnf 8180 df-ltxr 8182 df-inn 9107 df-2 9165 df-3 9166 df-ndx 13030 df-slot 13031 df-base 13033 df-sets 13034 df-iress 13035 df-plusg 13118 df-mulr 13119 df-0g 13286 df-iimas 13330 df-qus 13331 df-mgm 13384 df-sgrp 13430 df-mnd 13445 df-grp 13531 df-minusg 13532 df-sbg 13533 df-subg 13702 df-nsg 13703 df-eqg 13704 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |