| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > qussub | GIF version | ||
| Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.) |
| Ref | Expression |
|---|---|
| qusgrp.h | ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) |
| qusinv.v | ⊢ 𝑉 = (Base‘𝐺) |
| qussub.p | ⊢ − = (-g‘𝐺) |
| qussub.a | ⊢ 𝑁 = (-g‘𝐻) |
| Ref | Expression |
|---|---|
| qussub | ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qusgrp.h | . . . . 5 ⊢ 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)) | |
| 2 | qusinv.v | . . . . 5 ⊢ 𝑉 = (Base‘𝐺) | |
| 3 | eqid 2206 | . . . . 5 ⊢ (Base‘𝐻) = (Base‘𝐻) | |
| 4 | 1, 2, 3 | quseccl 13644 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 5 | 4 | 3adant3 1020 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 6 | 1, 2, 3 | quseccl 13644 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) |
| 7 | eqid 2206 | . . . 4 ⊢ (+g‘𝐻) = (+g‘𝐻) | |
| 8 | eqid 2206 | . . . 4 ⊢ (invg‘𝐻) = (invg‘𝐻) | |
| 9 | qussub.a | . . . 4 ⊢ 𝑁 = (-g‘𝐻) | |
| 10 | 3, 7, 8, 9 | grpsubval 13453 | . . 3 ⊢ (([𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)))) |
| 11 | 5, 6, 10 | 3imp3i2an 1186 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)))) |
| 12 | eqid 2206 | . . . . 5 ⊢ (invg‘𝐺) = (invg‘𝐺) | |
| 13 | 1, 2, 12, 8 | qusinv 13647 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) |
| 14 | 13 | 3adant2 1019 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) |
| 15 | 14 | oveq2d 5973 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)((invg‘𝐻)‘[𝑌](𝐺 ~QG 𝑆))) = ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆))) |
| 16 | nsgsubg 13616 | . . . . . . 7 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺)) | |
| 17 | subgrcl 13590 | . . . . . . 7 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
| 18 | 16, 17 | syl 14 | . . . . . 6 ⊢ (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp) |
| 19 | 2, 12 | grpinvcl 13455 | . . . . . 6 ⊢ ((𝐺 ∈ Grp ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
| 20 | 18, 19 | sylan 283 | . . . . 5 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
| 21 | 20 | 3adant2 1019 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ((invg‘𝐺)‘𝑌) ∈ 𝑉) |
| 22 | eqid 2206 | . . . . 5 ⊢ (+g‘𝐺) = (+g‘𝐺) | |
| 23 | 1, 2, 22, 7 | qusadd 13645 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ ((invg‘𝐺)‘𝑌) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
| 24 | 21, 23 | syld3an3 1295 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
| 25 | qussub.p | . . . . . 6 ⊢ − = (-g‘𝐺) | |
| 26 | 2, 22, 12, 25 | grpsubval 13453 | . . . . 5 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 27 | 26 | 3adant1 1018 | . . . 4 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → (𝑋 − 𝑌) = (𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))) |
| 28 | 27 | eceq1d 6669 | . . 3 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → [(𝑋 − 𝑌)](𝐺 ~QG 𝑆) = [(𝑋(+g‘𝐺)((invg‘𝐺)‘𝑌))](𝐺 ~QG 𝑆)) |
| 29 | 24, 28 | eqtr4d 2242 | . 2 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g‘𝐻)[((invg‘𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
| 30 | 11, 15, 29 | 3eqtrd 2243 | 1 ⊢ ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 − 𝑌)](𝐺 ~QG 𝑆)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ‘cfv 5280 (class class class)co 5957 [cec 6631 Basecbs 12907 +gcplusg 12984 /s cqus 13207 Grpcgrp 13407 invgcminusg 13408 -gcsg 13409 SubGrpcsubg 13578 NrmSGrpcnsg 13579 ~QG cqg 13580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-addcom 8045 ax-addass 8047 ax-i2m1 8050 ax-0lt1 8051 ax-0id 8053 ax-rnegex 8054 ax-pre-ltirr 8057 ax-pre-lttrn 8059 ax-pre-ltadd 8061 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-tp 3646 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-er 6633 df-ec 6635 df-qs 6639 df-pnf 8129 df-mnf 8130 df-ltxr 8132 df-inn 9057 df-2 9115 df-3 9116 df-ndx 12910 df-slot 12911 df-base 12913 df-sets 12914 df-iress 12915 df-plusg 12997 df-mulr 12998 df-0g 13165 df-iimas 13209 df-qus 13210 df-mgm 13263 df-sgrp 13309 df-mnd 13324 df-grp 13410 df-minusg 13411 df-sbg 13412 df-subg 13581 df-nsg 13582 df-eqg 13583 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |