ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nndivre Unicode version

Theorem nndivre 9028
Description: The quotient of a real and a positive integer is real. (Contributed by NM, 28-Nov-2008.)
Assertion
Ref Expression
nndivre  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( A  /  N
)  e.  RR )

Proof of Theorem nndivre
StepHypRef Expression
1 nnre 8999 . . 3  |-  ( N  e.  NN  ->  N  e.  RR )
2 nnap0 9021 . . 3  |-  ( N  e.  NN  ->  N #  0 )
31, 2jca 306 . 2  |-  ( N  e.  NN  ->  ( N  e.  RR  /\  N #  0 ) )
4 redivclap 8760 . . 3  |-  ( ( A  e.  RR  /\  N  e.  RR  /\  N #  0 )  ->  ( A  /  N )  e.  RR )
543expb 1206 . 2  |-  ( ( A  e.  RR  /\  ( N  e.  RR  /\  N #  0 ) )  ->  ( A  /  N )  e.  RR )
63, 5sylan2 286 1  |-  ( ( A  e.  RR  /\  N  e.  NN )  ->  ( A  /  N
)  e.  RR )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167   class class class wbr 4034  (class class class)co 5923   RRcr 7880   0cc0 7881   # cap 8610    / cdiv 8701   NNcn 8992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-mulrcl 7980  ax-addcom 7981  ax-mulcom 7982  ax-addass 7983  ax-mulass 7984  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-1rid 7988  ax-0id 7989  ax-rnegex 7990  ax-precex 7991  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-apti 7996  ax-pre-ltadd 7997  ax-pre-mulgt0 7998  ax-pre-mulext 7999
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-id 4329  df-po 4332  df-iso 4333  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-reap 8604  df-ap 8611  df-div 8702  df-inn 8993
This theorem is referenced by:  nnrecre  9029  nndivred  9042  expcnvap0  11669  ef01bndlem  11923  sin01bnd  11924  cos01bnd  11925  fldivp1  12527  dveflem  14972  tangtx  15084  tan4thpi  15087  pigt3  15090
  Copyright terms: Public domain W3C validator