ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmmul Unicode version

Theorem rhmmul 13796
Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmmul.x  |-  X  =  ( Base `  R
)
rhmmul.m  |-  .x.  =  ( .r `  R )
rhmmul.n  |-  .X.  =  ( .r `  S )
Assertion
Ref Expression
rhmmul  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
) )

Proof of Theorem rhmmul
StepHypRef Expression
1 eqid 2196 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
2 eqid 2196 . . . . 5  |-  (mulGrp `  S )  =  (mulGrp `  S )
31, 2rhmmhm 13791 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
433ad2ant1 1020 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )
5 simp2 1000 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
6 rhmrcl1 13787 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
7 rhmmul.x . . . . . . . 8  |-  X  =  ( Base `  R
)
81, 7mgpbasg 13558 . . . . . . 7  |-  ( R  e.  Ring  ->  X  =  ( Base `  (mulGrp `  R ) ) )
96, 8syl 14 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  X  =  ( Base `  (mulGrp `  R
) ) )
109eleq2d 2266 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( A  e.  X  <->  A  e.  ( Base `  (mulGrp `  R
) ) ) )
11103ad2ant1 1020 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( A  e.  X  <->  A  e.  ( Base `  (mulGrp `  R
) ) ) )
125, 11mpbid 147 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  ( Base `  (mulGrp `  R ) ) )
13 simp3 1001 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
149eleq2d 2266 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( B  e.  X  <->  B  e.  ( Base `  (mulGrp `  R
) ) ) )
15143ad2ant1 1020 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( B  e.  X  <->  B  e.  ( Base `  (mulGrp `  R
) ) ) )
1613, 15mpbid 147 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  ( Base `  (mulGrp `  R ) ) )
17 eqid 2196 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
18 eqid 2196 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
19 eqid 2196 . . . 4  |-  ( +g  `  (mulGrp `  S )
)  =  ( +g  `  (mulGrp `  S )
)
2017, 18, 19mhmlin 13169 . . 3  |-  ( ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )  /\  A  e.  ( Base `  (mulGrp `  R )
)  /\  B  e.  ( Base `  (mulGrp `  R
) ) )  -> 
( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
214, 12, 16, 20syl3anc 1249 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A
( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
22 rhmmul.m . . . . . . . 8  |-  .x.  =  ( .r `  R )
231, 22mgpplusgg 13556 . . . . . . 7  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
246, 23syl 14 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
2524oveqd 5942 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( A  .x.  B )  =  ( A ( +g  `  (mulGrp `  R ) ) B ) )
2625fveq2d 5565 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( A  .x.  B
) )  =  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) ) )
27 rhmrcl2 13788 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
28 rhmmul.n . . . . . . 7  |-  .X.  =  ( .r `  S )
292, 28mgpplusgg 13556 . . . . . 6  |-  ( S  e.  Ring  ->  .X.  =  ( +g  `  (mulGrp `  S ) ) )
3027, 29syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  .X.  =  ( +g  `  (mulGrp `  S ) ) )
3130oveqd 5942 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )  .X.  ( F `  B
) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
3226, 31eqeq12d 2211 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
)  <->  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) ) )
33323ad2ant1 1020 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  (
( F `  ( A  .x.  B ) )  =  ( ( F `
 A )  .X.  ( F `  B ) )  <->  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) ) )
3421, 33mpbird 167 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   ` cfv 5259  (class class class)co 5925   Basecbs 12703   +g cplusg 12780   .rcmulr 12781   MndHom cmhm 13159  mulGrpcmgp 13552   Ringcrg 13628   RingHom crh 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-ghm 13447  df-mgp 13553  df-ur 13592  df-ring 13630  df-rhm 13784
This theorem is referenced by:  rhmdvdsr  13807  rhmopp  13808  rhmunitinv  13810  znidom  14289  znidomb  14290  znunit  14291  znrrg  14292  lgseisenlem3  15397  lgseisenlem4  15398
  Copyright terms: Public domain W3C validator