ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmmul Unicode version

Theorem rhmmul 14041
Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmmul.x  |-  X  =  ( Base `  R
)
rhmmul.m  |-  .x.  =  ( .r `  R )
rhmmul.n  |-  .X.  =  ( .r `  S )
Assertion
Ref Expression
rhmmul  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
) )

Proof of Theorem rhmmul
StepHypRef Expression
1 eqid 2207 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
2 eqid 2207 . . . . 5  |-  (mulGrp `  S )  =  (mulGrp `  S )
31, 2rhmmhm 14036 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
433ad2ant1 1021 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )
5 simp2 1001 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
6 rhmrcl1 14032 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
7 rhmmul.x . . . . . . . 8  |-  X  =  ( Base `  R
)
81, 7mgpbasg 13803 . . . . . . 7  |-  ( R  e.  Ring  ->  X  =  ( Base `  (mulGrp `  R ) ) )
96, 8syl 14 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  X  =  ( Base `  (mulGrp `  R
) ) )
109eleq2d 2277 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( A  e.  X  <->  A  e.  ( Base `  (mulGrp `  R
) ) ) )
11103ad2ant1 1021 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( A  e.  X  <->  A  e.  ( Base `  (mulGrp `  R
) ) ) )
125, 11mpbid 147 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  ( Base `  (mulGrp `  R ) ) )
13 simp3 1002 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
149eleq2d 2277 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( B  e.  X  <->  B  e.  ( Base `  (mulGrp `  R
) ) ) )
15143ad2ant1 1021 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( B  e.  X  <->  B  e.  ( Base `  (mulGrp `  R
) ) ) )
1613, 15mpbid 147 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  ( Base `  (mulGrp `  R ) ) )
17 eqid 2207 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
18 eqid 2207 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
19 eqid 2207 . . . 4  |-  ( +g  `  (mulGrp `  S )
)  =  ( +g  `  (mulGrp `  S )
)
2017, 18, 19mhmlin 13414 . . 3  |-  ( ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )  /\  A  e.  ( Base `  (mulGrp `  R )
)  /\  B  e.  ( Base `  (mulGrp `  R
) ) )  -> 
( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
214, 12, 16, 20syl3anc 1250 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A
( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
22 rhmmul.m . . . . . . . 8  |-  .x.  =  ( .r `  R )
231, 22mgpplusgg 13801 . . . . . . 7  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
246, 23syl 14 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
2524oveqd 5984 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( A  .x.  B )  =  ( A ( +g  `  (mulGrp `  R ) ) B ) )
2625fveq2d 5603 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( A  .x.  B
) )  =  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) ) )
27 rhmrcl2 14033 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
28 rhmmul.n . . . . . . 7  |-  .X.  =  ( .r `  S )
292, 28mgpplusgg 13801 . . . . . 6  |-  ( S  e.  Ring  ->  .X.  =  ( +g  `  (mulGrp `  S ) ) )
3027, 29syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  .X.  =  ( +g  `  (mulGrp `  S ) ) )
3130oveqd 5984 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )  .X.  ( F `  B
) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
3226, 31eqeq12d 2222 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
)  <->  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) ) )
33323ad2ant1 1021 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  (
( F `  ( A  .x.  B ) )  =  ( ( F `
 A )  .X.  ( F `  B ) )  <->  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) ) )
3421, 33mpbird 167 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   ` cfv 5290  (class class class)co 5967   Basecbs 12947   +g cplusg 13024   .rcmulr 13025   MndHom cmhm 13404  mulGrpcmgp 13797   Ringcrg 13873   RingHom crh 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-mhm 13406  df-grp 13450  df-ghm 13692  df-mgp 13798  df-ur 13837  df-ring 13875  df-rhm 14029
This theorem is referenced by:  rhmdvdsr  14052  rhmopp  14053  rhmunitinv  14055  znidom  14534  znidomb  14535  znunit  14536  znrrg  14537  lgseisenlem3  15664  lgseisenlem4  15665
  Copyright terms: Public domain W3C validator