ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmmul Unicode version

Theorem rhmmul 13926
Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmmul.x  |-  X  =  ( Base `  R
)
rhmmul.m  |-  .x.  =  ( .r `  R )
rhmmul.n  |-  .X.  =  ( .r `  S )
Assertion
Ref Expression
rhmmul  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
) )

Proof of Theorem rhmmul
StepHypRef Expression
1 eqid 2205 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
2 eqid 2205 . . . . 5  |-  (mulGrp `  S )  =  (mulGrp `  S )
31, 2rhmmhm 13921 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
433ad2ant1 1021 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )
5 simp2 1001 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
6 rhmrcl1 13917 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
7 rhmmul.x . . . . . . . 8  |-  X  =  ( Base `  R
)
81, 7mgpbasg 13688 . . . . . . 7  |-  ( R  e.  Ring  ->  X  =  ( Base `  (mulGrp `  R ) ) )
96, 8syl 14 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  X  =  ( Base `  (mulGrp `  R
) ) )
109eleq2d 2275 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( A  e.  X  <->  A  e.  ( Base `  (mulGrp `  R
) ) ) )
11103ad2ant1 1021 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( A  e.  X  <->  A  e.  ( Base `  (mulGrp `  R
) ) ) )
125, 11mpbid 147 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  ( Base `  (mulGrp `  R ) ) )
13 simp3 1002 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
149eleq2d 2275 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( B  e.  X  <->  B  e.  ( Base `  (mulGrp `  R
) ) ) )
15143ad2ant1 1021 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( B  e.  X  <->  B  e.  ( Base `  (mulGrp `  R
) ) ) )
1613, 15mpbid 147 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  ( Base `  (mulGrp `  R ) ) )
17 eqid 2205 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
18 eqid 2205 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
19 eqid 2205 . . . 4  |-  ( +g  `  (mulGrp `  S )
)  =  ( +g  `  (mulGrp `  S )
)
2017, 18, 19mhmlin 13299 . . 3  |-  ( ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )  /\  A  e.  ( Base `  (mulGrp `  R )
)  /\  B  e.  ( Base `  (mulGrp `  R
) ) )  -> 
( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
214, 12, 16, 20syl3anc 1250 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A
( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
22 rhmmul.m . . . . . . . 8  |-  .x.  =  ( .r `  R )
231, 22mgpplusgg 13686 . . . . . . 7  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
246, 23syl 14 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
2524oveqd 5961 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( A  .x.  B )  =  ( A ( +g  `  (mulGrp `  R ) ) B ) )
2625fveq2d 5580 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( A  .x.  B
) )  =  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) ) )
27 rhmrcl2 13918 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
28 rhmmul.n . . . . . . 7  |-  .X.  =  ( .r `  S )
292, 28mgpplusgg 13686 . . . . . 6  |-  ( S  e.  Ring  ->  .X.  =  ( +g  `  (mulGrp `  S ) ) )
3027, 29syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  .X.  =  ( +g  `  (mulGrp `  S ) ) )
3130oveqd 5961 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )  .X.  ( F `  B
) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
3226, 31eqeq12d 2220 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
)  <->  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) ) )
33323ad2ant1 1021 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  (
( F `  ( A  .x.  B ) )  =  ( ( F `
 A )  .X.  ( F `  B ) )  <->  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) ) )
3421, 33mpbird 167 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   ` cfv 5271  (class class class)co 5944   Basecbs 12832   +g cplusg 12909   .rcmulr 12910   MndHom cmhm 13289  mulGrpcmgp 13682   Ringcrg 13758   RingHom crh 13912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-pre-ltirr 8037  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-map 6737  df-pnf 8109  df-mnf 8110  df-ltxr 8112  df-inn 9037  df-2 9095  df-3 9096  df-ndx 12835  df-slot 12836  df-base 12838  df-sets 12839  df-plusg 12922  df-mulr 12923  df-0g 13090  df-mgm 13188  df-sgrp 13234  df-mnd 13249  df-mhm 13291  df-grp 13335  df-ghm 13577  df-mgp 13683  df-ur 13722  df-ring 13760  df-rhm 13914
This theorem is referenced by:  rhmdvdsr  13937  rhmopp  13938  rhmunitinv  13940  znidom  14419  znidomb  14420  znunit  14421  znrrg  14422  lgseisenlem3  15549  lgseisenlem4  15550
  Copyright terms: Public domain W3C validator