ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmmul Unicode version

Theorem rhmmul 13660
Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmmul.x  |-  X  =  ( Base `  R
)
rhmmul.m  |-  .x.  =  ( .r `  R )
rhmmul.n  |-  .X.  =  ( .r `  S )
Assertion
Ref Expression
rhmmul  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
) )

Proof of Theorem rhmmul
StepHypRef Expression
1 eqid 2193 . . . . 5  |-  (mulGrp `  R )  =  (mulGrp `  R )
2 eqid 2193 . . . . 5  |-  (mulGrp `  S )  =  (mulGrp `  S )
31, 2rhmmhm 13655 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) ) )
433ad2ant1 1020 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  F  e.  ( (mulGrp `  R
) MndHom  (mulGrp `  S )
) )
5 simp2 1000 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  X )
6 rhmrcl1 13651 . . . . . . 7  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
7 rhmmul.x . . . . . . . 8  |-  X  =  ( Base `  R
)
81, 7mgpbasg 13422 . . . . . . 7  |-  ( R  e.  Ring  ->  X  =  ( Base `  (mulGrp `  R ) ) )
96, 8syl 14 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  X  =  ( Base `  (mulGrp `  R
) ) )
109eleq2d 2263 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( A  e.  X  <->  A  e.  ( Base `  (mulGrp `  R
) ) ) )
11103ad2ant1 1020 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( A  e.  X  <->  A  e.  ( Base `  (mulGrp `  R
) ) ) )
125, 11mpbid 147 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  A  e.  ( Base `  (mulGrp `  R ) ) )
13 simp3 1001 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  X )
149eleq2d 2263 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( B  e.  X  <->  B  e.  ( Base `  (mulGrp `  R
) ) ) )
15143ad2ant1 1020 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( B  e.  X  <->  B  e.  ( Base `  (mulGrp `  R
) ) ) )
1613, 15mpbid 147 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  B  e.  ( Base `  (mulGrp `  R ) ) )
17 eqid 2193 . . . 4  |-  ( Base `  (mulGrp `  R )
)  =  ( Base `  (mulGrp `  R )
)
18 eqid 2193 . . . 4  |-  ( +g  `  (mulGrp `  R )
)  =  ( +g  `  (mulGrp `  R )
)
19 eqid 2193 . . . 4  |-  ( +g  `  (mulGrp `  S )
)  =  ( +g  `  (mulGrp `  S )
)
2017, 18, 19mhmlin 13039 . . 3  |-  ( ( F  e.  ( (mulGrp `  R ) MndHom  (mulGrp `  S ) )  /\  A  e.  ( Base `  (mulGrp `  R )
)  /\  B  e.  ( Base `  (mulGrp `  R
) ) )  -> 
( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
214, 12, 16, 20syl3anc 1249 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A
( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
22 rhmmul.m . . . . . . . 8  |-  .x.  =  ( .r `  R )
231, 22mgpplusgg 13420 . . . . . . 7  |-  ( R  e.  Ring  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
246, 23syl 14 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  .x.  =  ( +g  `  (mulGrp `  R ) ) )
2524oveqd 5935 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( A  .x.  B )  =  ( A ( +g  `  (mulGrp `  R ) ) B ) )
2625fveq2d 5558 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( A  .x.  B
) )  =  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) ) )
27 rhmrcl2 13652 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
28 rhmmul.n . . . . . . 7  |-  .X.  =  ( .r `  S )
292, 28mgpplusgg 13420 . . . . . 6  |-  ( S  e.  Ring  ->  .X.  =  ( +g  `  (mulGrp `  S ) ) )
3027, 29syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  .X.  =  ( +g  `  (mulGrp `  S ) ) )
3130oveqd 5935 . . . 4  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  A )  .X.  ( F `  B
) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) )
3226, 31eqeq12d 2208 . . 3  |-  ( F  e.  ( R RingHom  S
)  ->  ( ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
)  <->  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) ) )
33323ad2ant1 1020 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  (
( F `  ( A  .x.  B ) )  =  ( ( F `
 A )  .X.  ( F `  B ) )  <->  ( F `  ( A ( +g  `  (mulGrp `  R ) ) B ) )  =  ( ( F `  A
) ( +g  `  (mulGrp `  S ) ) ( F `  B ) ) ) )
3421, 33mpbird 167 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  X  /\  B  e.  X )  ->  ( F `  ( A  .x.  B ) )  =  ( ( F `  A )  .X.  ( F `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   .rcmulr 12696   MndHom cmhm 13029  mulGrpcmgp 13416   Ringcrg 13492   RingHom crh 13646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-ghm 13311  df-mgp 13417  df-ur 13456  df-ring 13494  df-rhm 13648
This theorem is referenced by:  rhmdvdsr  13671  rhmopp  13672  rhmunitinv  13674  znidom  14145  znidomb  14146  znunit  14147  znrrg  14148  lgseisenlem3  15188  lgseisenlem4  15189
  Copyright terms: Public domain W3C validator