ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmunitinv Unicode version

Theorem rhmunitinv 14055
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
rhmunitinv  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) )

Proof of Theorem rhmunitinv
StepHypRef Expression
1 rhmrcl1 14032 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
2 eqid 2207 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
3 eqid 2207 . . . . . . 7  |-  ( invr `  R )  =  (
invr `  R )
4 eqid 2207 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2207 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
62, 3, 4, 5unitlinv 14003 . . . . . 6  |-  ( ( R  e.  Ring  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  R ) `  A ) ( .r
`  R ) A )  =  ( 1r
`  R ) )
71, 6sylan 283 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  R ) `  A ) ( .r
`  R ) A )  =  ( 1r
`  R ) )
87fveq2d 5603 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( F `
 ( 1r `  R ) ) )
9 simpl 109 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( R RingHom  S ) )
10 eqidd 2208 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  R )
)
11 eqidd 2208 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  =  (Unit `  R ) )
121adantr 276 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e.  Ring )
13 ringsrg 13924 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
1412, 13syl 14 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e. SRing )
1510, 11, 14unitssd 13986 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  C_  ( Base `  R ) )
162, 3unitinvcl 14000 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (Unit `  R ) )
171, 16sylan 283 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (Unit `  R ) )
1815, 17sseldd 3202 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (
Base `  R )
)
19 simpr 110 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  (Unit `  R ) )
2015, 19sseldd 3202 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  R )
)
21 eqid 2207 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
22 eqid 2207 . . . . . 6  |-  ( .r
`  S )  =  ( .r `  S
)
2321, 4, 22rhmmul 14041 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( invr `  R ) `  A )  e.  (
Base `  R )  /\  A  e.  ( Base `  R ) )  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( ( F `  ( (
invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) ) )
249, 18, 20, 23syl3anc 1250 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( ( F `  ( (
invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) ) )
25 eqid 2207 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
265, 25rhm1 14044 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
2726adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
288, 24, 273eqtr3d 2248 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( 1r `  S ) )
29 rhmrcl2 14033 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
3029adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  Ring )
31 elrhmunit 14054 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )
32 eqid 2207 . . . . 5  |-  (Unit `  S )  =  (Unit `  S )
33 eqid 2207 . . . . 5  |-  ( invr `  S )  =  (
invr `  S )
3432, 33, 22, 25unitlinv 14003 . . . 4  |-  ( ( S  e.  Ring  /\  ( F `  A )  e.  (Unit `  S )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( 1r
`  S ) )
3530, 31, 34syl2anc 411 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( 1r
`  S ) )
3628, 35eqtr4d 2243 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) ) )
37 eqidd 2208 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  =  ( (mulGrp `  S )s  (Unit `  S )
) )
38 eqid 2207 . . . . . . . 8  |-  (mulGrp `  S )  =  (mulGrp `  S )
3938, 22mgpplusgg 13801 . . . . . . 7  |-  ( S  e.  Ring  ->  ( .r
`  S )  =  ( +g  `  (mulGrp `  S ) ) )
4030, 39syl 14 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( .r `  S )  =  ( +g  `  (mulGrp `  S ) ) )
41 basfn 13005 . . . . . . . 8  |-  Base  Fn  _V
4230elexd 2790 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  _V )
43 funfvex 5616 . . . . . . . . 9  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
4443funfni 5395 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
4541, 42, 44sylancr 414 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  S )  e.  _V )
46 eqidd 2208 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  S )  =  (
Base `  S )
)
47 eqidd 2208 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  (Unit `  S ) )
48 ringsrg 13924 . . . . . . . . 9  |-  ( S  e.  Ring  ->  S  e. SRing
)
4930, 48syl 14 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e. SRing )
5046, 47, 49unitssd 13986 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  C_  ( Base `  S ) )
5145, 50ssexd 4200 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  e.  _V )
5238mgpex 13802 . . . . . . 7  |-  ( S  e.  Ring  ->  (mulGrp `  S )  e.  _V )
5330, 52syl 14 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (mulGrp `  S
)  e.  _V )
5437, 40, 51, 53ressplusgd 13076 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( .r `  S )  =  ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) )
5554oveqd 5984 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( F `  (
( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) ) )
5654oveqd 5984 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) ) )
5755, 56eqeq12d 2222 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) )  <->  ( ( F `  ( ( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  =  ( ( (
invr `  S ) `  ( F `  A
) ) ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) ) ( F `
 A ) ) ) )
58 eqid 2207 . . . . . . 7  |-  ( (mulGrp `  S )s  (Unit `  S )
)  =  ( (mulGrp `  S )s  (Unit `  S )
)
5932, 58unitgrp 13993 . . . . . 6  |-  ( S  e.  Ring  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
6029, 59syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
6160adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
62 elrhmunit 14054 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( invr `  R ) `  A )  e.  (Unit `  R ) )  -> 
( F `  (
( invr `  R ) `  A ) )  e.  (Unit `  S )
)
6317, 62syldan 282 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  e.  (Unit `  S ) )
6447, 37, 49unitgrpbasd 13992 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6563, 64eleqtrd 2286 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6632, 33unitinvcl 14000 . . . . . 6  |-  ( ( S  e.  Ring  /\  ( F `  A )  e.  (Unit `  S )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  (Unit `  S ) )
6730, 31, 66syl2anc 411 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  (Unit `  S ) )
6867, 64eleqtrd 2286 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6931, 64eleqtrd 2286 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) ) )
70 eqid 2207 . . . . 5  |-  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) )  =  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) )
71 eqid 2207 . . . . 5  |-  ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) )  =  ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) )
7270, 71grprcan 13484 . . . 4  |-  ( ( ( (mulGrp `  S
)s  (Unit `  S )
)  e.  Grp  /\  ( ( F `  ( ( invr `  R
) `  A )
)  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) )  /\  (
( invr `  S ) `  ( F `  A
) )  e.  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) )  /\  ( F `  A )  e.  ( Base `  (
(mulGrp `  S )s  (Unit `  S ) ) ) ) )  ->  (
( ( F `  ( ( invr `  R
) `  A )
) ( +g  `  (
(mulGrp `  S )s  (Unit `  S ) ) ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  <-> 
( F `  (
( invr `  R ) `  A ) )  =  ( ( invr `  S
) `  ( F `  A ) ) ) )
7361, 65, 68, 69, 72syl13anc 1252 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  =  ( ( (
invr `  S ) `  ( F `  A
) ) ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) ) ( F `
 A ) )  <-> 
( F `  (
( invr `  R ) `  A ) )  =  ( ( invr `  S
) `  ( F `  A ) ) ) )
7457, 73bitrd 188 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) )  <->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) ) )
7536, 74mpbid 147 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776    Fn wfn 5285   ` cfv 5290  (class class class)co 5967   Basecbs 12947   ↾s cress 12948   +g cplusg 13024   .rcmulr 13025   Grpcgrp 13447  mulGrpcmgp 13797   1rcur 13836  SRingcsrg 13840   Ringcrg 13873  Unitcui 13964   invrcinvr 13997   RingHom crh 14027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-pre-ltirr 8072  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-tpos 6354  df-map 6760  df-pnf 8144  df-mnf 8145  df-ltxr 8147  df-inn 9072  df-2 9130  df-3 9131  df-ndx 12950  df-slot 12951  df-base 12953  df-sets 12954  df-iress 12955  df-plusg 13037  df-mulr 13038  df-0g 13205  df-mgm 13303  df-sgrp 13349  df-mnd 13364  df-mhm 13406  df-grp 13450  df-minusg 13451  df-ghm 13692  df-cmn 13737  df-abl 13738  df-mgp 13798  df-ur 13837  df-srg 13841  df-ring 13875  df-oppr 13945  df-dvdsr 13966  df-unit 13967  df-invr 13998  df-rhm 14029
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator