ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmunitinv Unicode version

Theorem rhmunitinv 14142
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
rhmunitinv  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) )

Proof of Theorem rhmunitinv
StepHypRef Expression
1 rhmrcl1 14119 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
2 eqid 2229 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
3 eqid 2229 . . . . . . 7  |-  ( invr `  R )  =  (
invr `  R )
4 eqid 2229 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2229 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
62, 3, 4, 5unitlinv 14090 . . . . . 6  |-  ( ( R  e.  Ring  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  R ) `  A ) ( .r
`  R ) A )  =  ( 1r
`  R ) )
71, 6sylan 283 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  R ) `  A ) ( .r
`  R ) A )  =  ( 1r
`  R ) )
87fveq2d 5631 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( F `
 ( 1r `  R ) ) )
9 simpl 109 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( R RingHom  S ) )
10 eqidd 2230 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  R )
)
11 eqidd 2230 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  =  (Unit `  R ) )
121adantr 276 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e.  Ring )
13 ringsrg 14010 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
1412, 13syl 14 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e. SRing )
1510, 11, 14unitssd 14073 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  C_  ( Base `  R ) )
162, 3unitinvcl 14087 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (Unit `  R ) )
171, 16sylan 283 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (Unit `  R ) )
1815, 17sseldd 3225 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (
Base `  R )
)
19 simpr 110 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  (Unit `  R ) )
2015, 19sseldd 3225 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  R )
)
21 eqid 2229 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
22 eqid 2229 . . . . . 6  |-  ( .r
`  S )  =  ( .r `  S
)
2321, 4, 22rhmmul 14128 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( invr `  R ) `  A )  e.  (
Base `  R )  /\  A  e.  ( Base `  R ) )  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( ( F `  ( (
invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) ) )
249, 18, 20, 23syl3anc 1271 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( ( F `  ( (
invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) ) )
25 eqid 2229 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
265, 25rhm1 14131 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
2726adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
288, 24, 273eqtr3d 2270 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( 1r `  S ) )
29 rhmrcl2 14120 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
3029adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  Ring )
31 elrhmunit 14141 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )
32 eqid 2229 . . . . 5  |-  (Unit `  S )  =  (Unit `  S )
33 eqid 2229 . . . . 5  |-  ( invr `  S )  =  (
invr `  S )
3432, 33, 22, 25unitlinv 14090 . . . 4  |-  ( ( S  e.  Ring  /\  ( F `  A )  e.  (Unit `  S )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( 1r
`  S ) )
3530, 31, 34syl2anc 411 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( 1r
`  S ) )
3628, 35eqtr4d 2265 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) ) )
37 eqidd 2230 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  =  ( (mulGrp `  S )s  (Unit `  S )
) )
38 eqid 2229 . . . . . . . 8  |-  (mulGrp `  S )  =  (mulGrp `  S )
3938, 22mgpplusgg 13887 . . . . . . 7  |-  ( S  e.  Ring  ->  ( .r
`  S )  =  ( +g  `  (mulGrp `  S ) ) )
4030, 39syl 14 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( .r `  S )  =  ( +g  `  (mulGrp `  S ) ) )
41 basfn 13091 . . . . . . . 8  |-  Base  Fn  _V
4230elexd 2813 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  _V )
43 funfvex 5644 . . . . . . . . 9  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
4443funfni 5423 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
4541, 42, 44sylancr 414 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  S )  e.  _V )
46 eqidd 2230 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  S )  =  (
Base `  S )
)
47 eqidd 2230 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  (Unit `  S ) )
48 ringsrg 14010 . . . . . . . . 9  |-  ( S  e.  Ring  ->  S  e. SRing
)
4930, 48syl 14 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e. SRing )
5046, 47, 49unitssd 14073 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  C_  ( Base `  S ) )
5145, 50ssexd 4224 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  e.  _V )
5238mgpex 13888 . . . . . . 7  |-  ( S  e.  Ring  ->  (mulGrp `  S )  e.  _V )
5330, 52syl 14 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (mulGrp `  S
)  e.  _V )
5437, 40, 51, 53ressplusgd 13162 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( .r `  S )  =  ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) )
5554oveqd 6018 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( F `  (
( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) ) )
5654oveqd 6018 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) ) )
5755, 56eqeq12d 2244 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) )  <->  ( ( F `  ( ( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  =  ( ( (
invr `  S ) `  ( F `  A
) ) ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) ) ( F `
 A ) ) ) )
58 eqid 2229 . . . . . . 7  |-  ( (mulGrp `  S )s  (Unit `  S )
)  =  ( (mulGrp `  S )s  (Unit `  S )
)
5932, 58unitgrp 14080 . . . . . 6  |-  ( S  e.  Ring  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
6029, 59syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
6160adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
62 elrhmunit 14141 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( invr `  R ) `  A )  e.  (Unit `  R ) )  -> 
( F `  (
( invr `  R ) `  A ) )  e.  (Unit `  S )
)
6317, 62syldan 282 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  e.  (Unit `  S ) )
6447, 37, 49unitgrpbasd 14079 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6563, 64eleqtrd 2308 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6632, 33unitinvcl 14087 . . . . . 6  |-  ( ( S  e.  Ring  /\  ( F `  A )  e.  (Unit `  S )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  (Unit `  S ) )
6730, 31, 66syl2anc 411 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  (Unit `  S ) )
6867, 64eleqtrd 2308 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6931, 64eleqtrd 2308 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) ) )
70 eqid 2229 . . . . 5  |-  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) )  =  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) )
71 eqid 2229 . . . . 5  |-  ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) )  =  ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) )
7270, 71grprcan 13570 . . . 4  |-  ( ( ( (mulGrp `  S
)s  (Unit `  S )
)  e.  Grp  /\  ( ( F `  ( ( invr `  R
) `  A )
)  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) )  /\  (
( invr `  S ) `  ( F `  A
) )  e.  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) )  /\  ( F `  A )  e.  ( Base `  (
(mulGrp `  S )s  (Unit `  S ) ) ) ) )  ->  (
( ( F `  ( ( invr `  R
) `  A )
) ( +g  `  (
(mulGrp `  S )s  (Unit `  S ) ) ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  <-> 
( F `  (
( invr `  R ) `  A ) )  =  ( ( invr `  S
) `  ( F `  A ) ) ) )
7361, 65, 68, 69, 72syl13anc 1273 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  =  ( ( (
invr `  S ) `  ( F `  A
) ) ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) ) ( F `
 A ) )  <-> 
( F `  (
( invr `  R ) `  A ) )  =  ( ( invr `  S
) `  ( F `  A ) ) ) )
7457, 73bitrd 188 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) )  <->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) ) )
7536, 74mpbid 147 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200   _Vcvv 2799    Fn wfn 5313   ` cfv 5318  (class class class)co 6001   Basecbs 13032   ↾s cress 13033   +g cplusg 13110   .rcmulr 13111   Grpcgrp 13533  mulGrpcmgp 13883   1rcur 13922  SRingcsrg 13926   Ringcrg 13959  Unitcui 14050   invrcinvr 14084   RingHom crh 14114
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-pre-ltirr 8111  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-tpos 6391  df-map 6797  df-pnf 8183  df-mnf 8184  df-ltxr 8186  df-inn 9111  df-2 9169  df-3 9170  df-ndx 13035  df-slot 13036  df-base 13038  df-sets 13039  df-iress 13040  df-plusg 13123  df-mulr 13124  df-0g 13291  df-mgm 13389  df-sgrp 13435  df-mnd 13450  df-mhm 13492  df-grp 13536  df-minusg 13537  df-ghm 13778  df-cmn 13823  df-abl 13824  df-mgp 13884  df-ur 13923  df-srg 13927  df-ring 13961  df-oppr 14031  df-dvdsr 14052  df-unit 14053  df-invr 14085  df-rhm 14116
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator