ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmunitinv Unicode version

Theorem rhmunitinv 13674
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
rhmunitinv  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) )

Proof of Theorem rhmunitinv
StepHypRef Expression
1 rhmrcl1 13651 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
2 eqid 2193 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
3 eqid 2193 . . . . . . 7  |-  ( invr `  R )  =  (
invr `  R )
4 eqid 2193 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2193 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
62, 3, 4, 5unitlinv 13622 . . . . . 6  |-  ( ( R  e.  Ring  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  R ) `  A ) ( .r
`  R ) A )  =  ( 1r
`  R ) )
71, 6sylan 283 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  R ) `  A ) ( .r
`  R ) A )  =  ( 1r
`  R ) )
87fveq2d 5558 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( F `
 ( 1r `  R ) ) )
9 simpl 109 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( R RingHom  S ) )
10 eqidd 2194 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  R )
)
11 eqidd 2194 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  =  (Unit `  R ) )
121adantr 276 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e.  Ring )
13 ringsrg 13543 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
1412, 13syl 14 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e. SRing )
1510, 11, 14unitssd 13605 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  C_  ( Base `  R ) )
162, 3unitinvcl 13619 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (Unit `  R ) )
171, 16sylan 283 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (Unit `  R ) )
1815, 17sseldd 3180 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (
Base `  R )
)
19 simpr 110 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  (Unit `  R ) )
2015, 19sseldd 3180 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  R )
)
21 eqid 2193 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
22 eqid 2193 . . . . . 6  |-  ( .r
`  S )  =  ( .r `  S
)
2321, 4, 22rhmmul 13660 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( invr `  R ) `  A )  e.  (
Base `  R )  /\  A  e.  ( Base `  R ) )  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( ( F `  ( (
invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) ) )
249, 18, 20, 23syl3anc 1249 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( ( F `  ( (
invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) ) )
25 eqid 2193 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
265, 25rhm1 13663 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
2726adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
288, 24, 273eqtr3d 2234 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( 1r `  S ) )
29 rhmrcl2 13652 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
3029adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  Ring )
31 elrhmunit 13673 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )
32 eqid 2193 . . . . 5  |-  (Unit `  S )  =  (Unit `  S )
33 eqid 2193 . . . . 5  |-  ( invr `  S )  =  (
invr `  S )
3432, 33, 22, 25unitlinv 13622 . . . 4  |-  ( ( S  e.  Ring  /\  ( F `  A )  e.  (Unit `  S )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( 1r
`  S ) )
3530, 31, 34syl2anc 411 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( 1r
`  S ) )
3628, 35eqtr4d 2229 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) ) )
37 eqidd 2194 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  =  ( (mulGrp `  S )s  (Unit `  S )
) )
38 eqid 2193 . . . . . . . 8  |-  (mulGrp `  S )  =  (mulGrp `  S )
3938, 22mgpplusgg 13420 . . . . . . 7  |-  ( S  e.  Ring  ->  ( .r
`  S )  =  ( +g  `  (mulGrp `  S ) ) )
4030, 39syl 14 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( .r `  S )  =  ( +g  `  (mulGrp `  S ) ) )
41 basfn 12676 . . . . . . . 8  |-  Base  Fn  _V
4230elexd 2773 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  _V )
43 funfvex 5571 . . . . . . . . 9  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
4443funfni 5354 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
4541, 42, 44sylancr 414 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  S )  e.  _V )
46 eqidd 2194 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  S )  =  (
Base `  S )
)
47 eqidd 2194 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  (Unit `  S ) )
48 ringsrg 13543 . . . . . . . . 9  |-  ( S  e.  Ring  ->  S  e. SRing
)
4930, 48syl 14 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e. SRing )
5046, 47, 49unitssd 13605 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  C_  ( Base `  S ) )
5145, 50ssexd 4169 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  e.  _V )
5238mgpex 13421 . . . . . . 7  |-  ( S  e.  Ring  ->  (mulGrp `  S )  e.  _V )
5330, 52syl 14 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (mulGrp `  S
)  e.  _V )
5437, 40, 51, 53ressplusgd 12746 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( .r `  S )  =  ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) )
5554oveqd 5935 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( F `  (
( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) ) )
5654oveqd 5935 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) ) )
5755, 56eqeq12d 2208 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) )  <->  ( ( F `  ( ( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  =  ( ( (
invr `  S ) `  ( F `  A
) ) ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) ) ( F `
 A ) ) ) )
58 eqid 2193 . . . . . . 7  |-  ( (mulGrp `  S )s  (Unit `  S )
)  =  ( (mulGrp `  S )s  (Unit `  S )
)
5932, 58unitgrp 13612 . . . . . 6  |-  ( S  e.  Ring  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
6029, 59syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
6160adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
62 elrhmunit 13673 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( invr `  R ) `  A )  e.  (Unit `  R ) )  -> 
( F `  (
( invr `  R ) `  A ) )  e.  (Unit `  S )
)
6317, 62syldan 282 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  e.  (Unit `  S ) )
6447, 37, 49unitgrpbasd 13611 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6563, 64eleqtrd 2272 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6632, 33unitinvcl 13619 . . . . . 6  |-  ( ( S  e.  Ring  /\  ( F `  A )  e.  (Unit `  S )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  (Unit `  S ) )
6730, 31, 66syl2anc 411 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  (Unit `  S ) )
6867, 64eleqtrd 2272 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6931, 64eleqtrd 2272 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) ) )
70 eqid 2193 . . . . 5  |-  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) )  =  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) )
71 eqid 2193 . . . . 5  |-  ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) )  =  ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) )
7270, 71grprcan 13109 . . . 4  |-  ( ( ( (mulGrp `  S
)s  (Unit `  S )
)  e.  Grp  /\  ( ( F `  ( ( invr `  R
) `  A )
)  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) )  /\  (
( invr `  S ) `  ( F `  A
) )  e.  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) )  /\  ( F `  A )  e.  ( Base `  (
(mulGrp `  S )s  (Unit `  S ) ) ) ) )  ->  (
( ( F `  ( ( invr `  R
) `  A )
) ( +g  `  (
(mulGrp `  S )s  (Unit `  S ) ) ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  <-> 
( F `  (
( invr `  R ) `  A ) )  =  ( ( invr `  S
) `  ( F `  A ) ) ) )
7361, 65, 68, 69, 72syl13anc 1251 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  =  ( ( (
invr `  S ) `  ( F `  A
) ) ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) ) ( F `
 A ) )  <-> 
( F `  (
( invr `  R ) `  A ) )  =  ( ( invr `  S
) `  ( F `  A ) ) ) )
7457, 73bitrd 188 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) )  <->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) ) )
7536, 74mpbid 147 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2164   _Vcvv 2760    Fn wfn 5249   ` cfv 5254  (class class class)co 5918   Basecbs 12618   ↾s cress 12619   +g cplusg 12695   .rcmulr 12696   Grpcgrp 13072  mulGrpcmgp 13416   1rcur 13455  SRingcsrg 13459   Ringcrg 13492  Unitcui 13583   invrcinvr 13616   RingHom crh 13646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-addcom 7972  ax-addass 7974  ax-i2m1 7977  ax-0lt1 7978  ax-0id 7980  ax-rnegex 7981  ax-pre-ltirr 7984  ax-pre-lttrn 7986  ax-pre-ltadd 7988
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-tpos 6298  df-map 6704  df-pnf 8056  df-mnf 8057  df-ltxr 8059  df-inn 8983  df-2 9041  df-3 9042  df-ndx 12621  df-slot 12622  df-base 12624  df-sets 12625  df-iress 12626  df-plusg 12708  df-mulr 12709  df-0g 12869  df-mgm 12939  df-sgrp 12985  df-mnd 12998  df-mhm 13031  df-grp 13075  df-minusg 13076  df-ghm 13311  df-cmn 13356  df-abl 13357  df-mgp 13417  df-ur 13456  df-srg 13460  df-ring 13494  df-oppr 13564  df-dvdsr 13585  df-unit 13586  df-invr 13617  df-rhm 13648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator