ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmunitinv Unicode version

Theorem rhmunitinv 13973
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
rhmunitinv  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) )

Proof of Theorem rhmunitinv
StepHypRef Expression
1 rhmrcl1 13950 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
2 eqid 2205 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
3 eqid 2205 . . . . . . 7  |-  ( invr `  R )  =  (
invr `  R )
4 eqid 2205 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2205 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
62, 3, 4, 5unitlinv 13921 . . . . . 6  |-  ( ( R  e.  Ring  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  R ) `  A ) ( .r
`  R ) A )  =  ( 1r
`  R ) )
71, 6sylan 283 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  R ) `  A ) ( .r
`  R ) A )  =  ( 1r
`  R ) )
87fveq2d 5582 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( F `
 ( 1r `  R ) ) )
9 simpl 109 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( R RingHom  S ) )
10 eqidd 2206 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  R )
)
11 eqidd 2206 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  =  (Unit `  R ) )
121adantr 276 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e.  Ring )
13 ringsrg 13842 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
1412, 13syl 14 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e. SRing )
1510, 11, 14unitssd 13904 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  C_  ( Base `  R ) )
162, 3unitinvcl 13918 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (Unit `  R ) )
171, 16sylan 283 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (Unit `  R ) )
1815, 17sseldd 3194 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (
Base `  R )
)
19 simpr 110 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  (Unit `  R ) )
2015, 19sseldd 3194 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  R )
)
21 eqid 2205 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
22 eqid 2205 . . . . . 6  |-  ( .r
`  S )  =  ( .r `  S
)
2321, 4, 22rhmmul 13959 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( invr `  R ) `  A )  e.  (
Base `  R )  /\  A  e.  ( Base `  R ) )  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( ( F `  ( (
invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) ) )
249, 18, 20, 23syl3anc 1250 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( ( F `  ( (
invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) ) )
25 eqid 2205 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
265, 25rhm1 13962 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
2726adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
288, 24, 273eqtr3d 2246 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( 1r `  S ) )
29 rhmrcl2 13951 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
3029adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  Ring )
31 elrhmunit 13972 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )
32 eqid 2205 . . . . 5  |-  (Unit `  S )  =  (Unit `  S )
33 eqid 2205 . . . . 5  |-  ( invr `  S )  =  (
invr `  S )
3432, 33, 22, 25unitlinv 13921 . . . 4  |-  ( ( S  e.  Ring  /\  ( F `  A )  e.  (Unit `  S )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( 1r
`  S ) )
3530, 31, 34syl2anc 411 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( 1r
`  S ) )
3628, 35eqtr4d 2241 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) ) )
37 eqidd 2206 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  =  ( (mulGrp `  S )s  (Unit `  S )
) )
38 eqid 2205 . . . . . . . 8  |-  (mulGrp `  S )  =  (mulGrp `  S )
3938, 22mgpplusgg 13719 . . . . . . 7  |-  ( S  e.  Ring  ->  ( .r
`  S )  =  ( +g  `  (mulGrp `  S ) ) )
4030, 39syl 14 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( .r `  S )  =  ( +g  `  (mulGrp `  S ) ) )
41 basfn 12923 . . . . . . . 8  |-  Base  Fn  _V
4230elexd 2785 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  _V )
43 funfvex 5595 . . . . . . . . 9  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
4443funfni 5377 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
4541, 42, 44sylancr 414 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  S )  e.  _V )
46 eqidd 2206 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  S )  =  (
Base `  S )
)
47 eqidd 2206 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  (Unit `  S ) )
48 ringsrg 13842 . . . . . . . . 9  |-  ( S  e.  Ring  ->  S  e. SRing
)
4930, 48syl 14 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e. SRing )
5046, 47, 49unitssd 13904 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  C_  ( Base `  S ) )
5145, 50ssexd 4185 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  e.  _V )
5238mgpex 13720 . . . . . . 7  |-  ( S  e.  Ring  ->  (mulGrp `  S )  e.  _V )
5330, 52syl 14 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (mulGrp `  S
)  e.  _V )
5437, 40, 51, 53ressplusgd 12994 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( .r `  S )  =  ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) )
5554oveqd 5963 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( F `  (
( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) ) )
5654oveqd 5963 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) ) )
5755, 56eqeq12d 2220 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) )  <->  ( ( F `  ( ( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  =  ( ( (
invr `  S ) `  ( F `  A
) ) ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) ) ( F `
 A ) ) ) )
58 eqid 2205 . . . . . . 7  |-  ( (mulGrp `  S )s  (Unit `  S )
)  =  ( (mulGrp `  S )s  (Unit `  S )
)
5932, 58unitgrp 13911 . . . . . 6  |-  ( S  e.  Ring  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
6029, 59syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
6160adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
62 elrhmunit 13972 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( invr `  R ) `  A )  e.  (Unit `  R ) )  -> 
( F `  (
( invr `  R ) `  A ) )  e.  (Unit `  S )
)
6317, 62syldan 282 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  e.  (Unit `  S ) )
6447, 37, 49unitgrpbasd 13910 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6563, 64eleqtrd 2284 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6632, 33unitinvcl 13918 . . . . . 6  |-  ( ( S  e.  Ring  /\  ( F `  A )  e.  (Unit `  S )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  (Unit `  S ) )
6730, 31, 66syl2anc 411 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  (Unit `  S ) )
6867, 64eleqtrd 2284 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6931, 64eleqtrd 2284 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) ) )
70 eqid 2205 . . . . 5  |-  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) )  =  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) )
71 eqid 2205 . . . . 5  |-  ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) )  =  ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) )
7270, 71grprcan 13402 . . . 4  |-  ( ( ( (mulGrp `  S
)s  (Unit `  S )
)  e.  Grp  /\  ( ( F `  ( ( invr `  R
) `  A )
)  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) )  /\  (
( invr `  S ) `  ( F `  A
) )  e.  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) )  /\  ( F `  A )  e.  ( Base `  (
(mulGrp `  S )s  (Unit `  S ) ) ) ) )  ->  (
( ( F `  ( ( invr `  R
) `  A )
) ( +g  `  (
(mulGrp `  S )s  (Unit `  S ) ) ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  <-> 
( F `  (
( invr `  R ) `  A ) )  =  ( ( invr `  S
) `  ( F `  A ) ) ) )
7361, 65, 68, 69, 72syl13anc 1252 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  =  ( ( (
invr `  S ) `  ( F `  A
) ) ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) ) ( F `
 A ) )  <-> 
( F `  (
( invr `  R ) `  A ) )  =  ( ( invr `  S
) `  ( F `  A ) ) ) )
7457, 73bitrd 188 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) )  <->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) ) )
7536, 74mpbid 147 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772    Fn wfn 5267   ` cfv 5272  (class class class)co 5946   Basecbs 12865   ↾s cress 12866   +g cplusg 12942   .rcmulr 12943   Grpcgrp 13365  mulGrpcmgp 13715   1rcur 13754  SRingcsrg 13758   Ringcrg 13791  Unitcui 13882   invrcinvr 13915   RingHom crh 13945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4160  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481  ax-setind 4586  ax-cnex 8018  ax-resscn 8019  ax-1cn 8020  ax-1re 8021  ax-icn 8022  ax-addcl 8023  ax-addrcl 8024  ax-mulcl 8025  ax-addcom 8027  ax-addass 8029  ax-i2m1 8032  ax-0lt1 8033  ax-0id 8035  ax-rnegex 8036  ax-pre-ltirr 8039  ax-pre-lttrn 8041  ax-pre-ltadd 8043
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4046  df-opab 4107  df-mpt 4108  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-iota 5233  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-fv 5280  df-riota 5901  df-ov 5949  df-oprab 5950  df-mpo 5951  df-1st 6228  df-2nd 6229  df-tpos 6333  df-map 6739  df-pnf 8111  df-mnf 8112  df-ltxr 8114  df-inn 9039  df-2 9097  df-3 9098  df-ndx 12868  df-slot 12869  df-base 12871  df-sets 12872  df-iress 12873  df-plusg 12955  df-mulr 12956  df-0g 13123  df-mgm 13221  df-sgrp 13267  df-mnd 13282  df-mhm 13324  df-grp 13368  df-minusg 13369  df-ghm 13610  df-cmn 13655  df-abl 13656  df-mgp 13716  df-ur 13755  df-srg 13759  df-ring 13793  df-oppr 13863  df-dvdsr 13884  df-unit 13885  df-invr 13916  df-rhm 13947
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator