ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmunitinv Unicode version

Theorem rhmunitinv 13810
Description: Ring homomorphisms preserve the inverse of unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
rhmunitinv  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) )

Proof of Theorem rhmunitinv
StepHypRef Expression
1 rhmrcl1 13787 . . . . . 6  |-  ( F  e.  ( R RingHom  S
)  ->  R  e.  Ring )
2 eqid 2196 . . . . . . 7  |-  (Unit `  R )  =  (Unit `  R )
3 eqid 2196 . . . . . . 7  |-  ( invr `  R )  =  (
invr `  R )
4 eqid 2196 . . . . . . 7  |-  ( .r
`  R )  =  ( .r `  R
)
5 eqid 2196 . . . . . . 7  |-  ( 1r
`  R )  =  ( 1r `  R
)
62, 3, 4, 5unitlinv 13758 . . . . . 6  |-  ( ( R  e.  Ring  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  R ) `  A ) ( .r
`  R ) A )  =  ( 1r
`  R ) )
71, 6sylan 283 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  R ) `  A ) ( .r
`  R ) A )  =  ( 1r
`  R ) )
87fveq2d 5565 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( F `
 ( 1r `  R ) ) )
9 simpl 109 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  F  e.  ( R RingHom  S ) )
10 eqidd 2197 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  R )  =  (
Base `  R )
)
11 eqidd 2197 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  =  (Unit `  R ) )
121adantr 276 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e.  Ring )
13 ringsrg 13679 . . . . . . . 8  |-  ( R  e.  Ring  ->  R  e. SRing
)
1412, 13syl 14 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  R  e. SRing )
1510, 11, 14unitssd 13741 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  R
)  C_  ( Base `  R ) )
162, 3unitinvcl 13755 . . . . . . 7  |-  ( ( R  e.  Ring  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (Unit `  R ) )
171, 16sylan 283 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (Unit `  R ) )
1815, 17sseldd 3185 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  R ) `  A )  e.  (
Base `  R )
)
19 simpr 110 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  (Unit `  R ) )
2015, 19sseldd 3185 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  A  e.  ( Base `  R )
)
21 eqid 2196 . . . . . 6  |-  ( Base `  R )  =  (
Base `  R )
22 eqid 2196 . . . . . 6  |-  ( .r
`  S )  =  ( .r `  S
)
2321, 4, 22rhmmul 13796 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( invr `  R ) `  A )  e.  (
Base `  R )  /\  A  e.  ( Base `  R ) )  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( ( F `  ( (
invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) ) )
249, 18, 20, 23syl3anc 1249 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( ( invr `  R ) `  A
) ( .r `  R ) A ) )  =  ( ( F `  ( (
invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) ) )
25 eqid 2196 . . . . . 6  |-  ( 1r
`  S )  =  ( 1r `  S
)
265, 25rhm1 13799 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
2726adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( 1r `  R
) )  =  ( 1r `  S ) )
288, 24, 273eqtr3d 2237 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( 1r `  S ) )
29 rhmrcl2 13788 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  S  e.  Ring )
3029adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  Ring )
31 elrhmunit 13809 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (Unit `  S ) )
32 eqid 2196 . . . . 5  |-  (Unit `  S )  =  (Unit `  S )
33 eqid 2196 . . . . 5  |-  ( invr `  S )  =  (
invr `  S )
3432, 33, 22, 25unitlinv 13758 . . . 4  |-  ( ( S  e.  Ring  /\  ( F `  A )  e.  (Unit `  S )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( 1r
`  S ) )
3530, 31, 34syl2anc 411 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( 1r
`  S ) )
3628, 35eqtr4d 2232 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) ) )
37 eqidd 2197 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  =  ( (mulGrp `  S )s  (Unit `  S )
) )
38 eqid 2196 . . . . . . . 8  |-  (mulGrp `  S )  =  (mulGrp `  S )
3938, 22mgpplusgg 13556 . . . . . . 7  |-  ( S  e.  Ring  ->  ( .r
`  S )  =  ( +g  `  (mulGrp `  S ) ) )
4030, 39syl 14 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( .r `  S )  =  ( +g  `  (mulGrp `  S ) ) )
41 basfn 12761 . . . . . . . 8  |-  Base  Fn  _V
4230elexd 2776 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e.  _V )
43 funfvex 5578 . . . . . . . . 9  |-  ( ( Fun  Base  /\  S  e. 
dom  Base )  ->  ( Base `  S )  e. 
_V )
4443funfni 5361 . . . . . . . 8  |-  ( (
Base  Fn  _V  /\  S  e.  _V )  ->  ( Base `  S )  e. 
_V )
4541, 42, 44sylancr 414 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  S )  e.  _V )
46 eqidd 2197 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( Base `  S )  =  (
Base `  S )
)
47 eqidd 2197 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  (Unit `  S ) )
48 ringsrg 13679 . . . . . . . . 9  |-  ( S  e.  Ring  ->  S  e. SRing
)
4930, 48syl 14 . . . . . . . 8  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  S  e. SRing )
5046, 47, 49unitssd 13741 . . . . . . 7  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  C_  ( Base `  S ) )
5145, 50ssexd 4174 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  e.  _V )
5238mgpex 13557 . . . . . . 7  |-  ( S  e.  Ring  ->  (mulGrp `  S )  e.  _V )
5330, 52syl 14 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (mulGrp `  S
)  e.  _V )
5437, 40, 51, 53ressplusgd 12831 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( .r `  S )  =  ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) )
5554oveqd 5942 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( F `  ( ( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( F `  (
( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) ) )
5654oveqd 5942 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( invr `  S ) `  ( F `  A
) ) ( .r
`  S ) ( F `  A ) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) ) )
5755, 56eqeq12d 2211 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) )  <->  ( ( F `  ( ( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  =  ( ( (
invr `  S ) `  ( F `  A
) ) ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) ) ( F `
 A ) ) ) )
58 eqid 2196 . . . . . . 7  |-  ( (mulGrp `  S )s  (Unit `  S )
)  =  ( (mulGrp `  S )s  (Unit `  S )
)
5932, 58unitgrp 13748 . . . . . 6  |-  ( S  e.  Ring  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
6029, 59syl 14 . . . . 5  |-  ( F  e.  ( R RingHom  S
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
6160adantr 276 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (mulGrp `  S )s  (Unit `  S )
)  e.  Grp )
62 elrhmunit 13809 . . . . . 6  |-  ( ( F  e.  ( R RingHom  S )  /\  (
( invr `  R ) `  A )  e.  (Unit `  R ) )  -> 
( F `  (
( invr `  R ) `  A ) )  e.  (Unit `  S )
)
6317, 62syldan 282 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  e.  (Unit `  S ) )
6447, 37, 49unitgrpbasd 13747 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  (Unit `  S
)  =  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6563, 64eleqtrd 2275 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6632, 33unitinvcl 13755 . . . . . 6  |-  ( ( S  e.  Ring  /\  ( F `  A )  e.  (Unit `  S )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  (Unit `  S ) )
6730, 31, 66syl2anc 411 . . . . 5  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  (Unit `  S ) )
6867, 64eleqtrd 2275 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( ( invr `  S ) `  ( F `  A ) )  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) ) )
6931, 64eleqtrd 2275 . . . 4  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  A )  e.  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) ) )
70 eqid 2196 . . . . 5  |-  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) )  =  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) )
71 eqid 2196 . . . . 5  |-  ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) )  =  ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) )
7270, 71grprcan 13239 . . . 4  |-  ( ( ( (mulGrp `  S
)s  (Unit `  S )
)  e.  Grp  /\  ( ( F `  ( ( invr `  R
) `  A )
)  e.  ( Base `  ( (mulGrp `  S
)s  (Unit `  S )
) )  /\  (
( invr `  S ) `  ( F `  A
) )  e.  (
Base `  ( (mulGrp `  S )s  (Unit `  S )
) )  /\  ( F `  A )  e.  ( Base `  (
(mulGrp `  S )s  (Unit `  S ) ) ) ) )  ->  (
( ( F `  ( ( invr `  R
) `  A )
) ( +g  `  (
(mulGrp `  S )s  (Unit `  S ) ) ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  <-> 
( F `  (
( invr `  R ) `  A ) )  =  ( ( invr `  S
) `  ( F `  A ) ) ) )
7361, 65, 68, 69, 72syl13anc 1251 . . 3  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( +g  `  ( (mulGrp `  S )s  (Unit `  S )
) ) ( F `
 A ) )  =  ( ( (
invr `  S ) `  ( F `  A
) ) ( +g  `  ( (mulGrp `  S
)s  (Unit `  S )
) ) ( F `
 A ) )  <-> 
( F `  (
( invr `  R ) `  A ) )  =  ( ( invr `  S
) `  ( F `  A ) ) ) )
7457, 73bitrd 188 . 2  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( (
( F `  (
( invr `  R ) `  A ) ) ( .r `  S ) ( F `  A
) )  =  ( ( ( invr `  S
) `  ( F `  A ) ) ( .r `  S ) ( F `  A
) )  <->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) ) )
7536, 74mpbid 147 1  |-  ( ( F  e.  ( R RingHom  S )  /\  A  e.  (Unit `  R )
)  ->  ( F `  ( ( invr `  R
) `  A )
)  =  ( (
invr `  S ) `  ( F `  A
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    Fn wfn 5254   ` cfv 5259  (class class class)co 5925   Basecbs 12703   ↾s cress 12704   +g cplusg 12780   .rcmulr 12781   Grpcgrp 13202  mulGrpcmgp 13552   1rcur 13591  SRingcsrg 13595   Ringcrg 13628  Unitcui 13719   invrcinvr 13752   RingHom crh 13782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-tpos 6312  df-map 6718  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-mhm 13161  df-grp 13205  df-minusg 13206  df-ghm 13447  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753  df-rhm 13784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator