ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmmul GIF version

Theorem rhmmul 13868
Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmmul.x 𝑋 = (Base‘𝑅)
rhmmul.m · = (.r𝑅)
rhmmul.n × = (.r𝑆)
Assertion
Ref Expression
rhmmul ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))

Proof of Theorem rhmmul
StepHypRef Expression
1 eqid 2204 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2204 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
31, 2rhmmhm 13863 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
433ad2ant1 1020 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
5 simp2 1000 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
6 rhmrcl1 13859 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
7 rhmmul.x . . . . . . . 8 𝑋 = (Base‘𝑅)
81, 7mgpbasg 13630 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 = (Base‘(mulGrp‘𝑅)))
96, 8syl 14 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑋 = (Base‘(mulGrp‘𝑅)))
109eleq2d 2274 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐴𝑋𝐴 ∈ (Base‘(mulGrp‘𝑅))))
11103ad2ant1 1020 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐴 ∈ (Base‘(mulGrp‘𝑅))))
125, 11mpbid 147 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝐴 ∈ (Base‘(mulGrp‘𝑅)))
13 simp3 1001 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
149eleq2d 2274 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐵𝑋𝐵 ∈ (Base‘(mulGrp‘𝑅))))
15143ad2ant1 1020 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝑋𝐵 ∈ (Base‘(mulGrp‘𝑅))))
1613, 15mpbid 147 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝐵 ∈ (Base‘(mulGrp‘𝑅)))
17 eqid 2204 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
18 eqid 2204 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
19 eqid 2204 . . . 4 (+g‘(mulGrp‘𝑆)) = (+g‘(mulGrp‘𝑆))
2017, 18, 19mhmlin 13241 . . 3 ((𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ∧ 𝐴 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝐵 ∈ (Base‘(mulGrp‘𝑅))) → (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹𝐴)(+g‘(mulGrp‘𝑆))(𝐹𝐵)))
214, 12, 16, 20syl3anc 1249 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹𝐴)(+g‘(mulGrp‘𝑆))(𝐹𝐵)))
22 rhmmul.m . . . . . . . 8 · = (.r𝑅)
231, 22mgpplusgg 13628 . . . . . . 7 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
246, 23syl 14 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → · = (+g‘(mulGrp‘𝑅)))
2524oveqd 5960 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐴 · 𝐵) = (𝐴(+g‘(mulGrp‘𝑅))𝐵))
2625fveq2d 5579 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(𝐴 · 𝐵)) = (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)))
27 rhmrcl2 13860 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
28 rhmmul.n . . . . . . 7 × = (.r𝑆)
292, 28mgpplusgg 13628 . . . . . 6 (𝑆 ∈ Ring → × = (+g‘(mulGrp‘𝑆)))
3027, 29syl 14 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → × = (+g‘(mulGrp‘𝑆)))
3130oveqd 5960 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹𝐴) × (𝐹𝐵)) = ((𝐹𝐴)(+g‘(mulGrp‘𝑆))(𝐹𝐵)))
3226, 31eqeq12d 2219 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)) ↔ (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹𝐴)(+g‘(mulGrp‘𝑆))(𝐹𝐵))))
33323ad2ant1 1020 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → ((𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)) ↔ (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹𝐴)(+g‘(mulGrp‘𝑆))(𝐹𝐵))))
3421, 33mpbird 167 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 980   = wceq 1372  wcel 2175  cfv 5270  (class class class)co 5943  Basecbs 12774  +gcplusg 12851  .rcmulr 12852   MndHom cmhm 13231  mulGrpcmgp 13624  Ringcrg 13700   RingHom crh 13854
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-addcom 8024  ax-addass 8026  ax-i2m1 8029  ax-0lt1 8030  ax-0id 8032  ax-rnegex 8033  ax-pre-ltirr 8036  ax-pre-ltadd 8040
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-map 6736  df-pnf 8108  df-mnf 8109  df-ltxr 8111  df-inn 9036  df-2 9094  df-3 9095  df-ndx 12777  df-slot 12778  df-base 12780  df-sets 12781  df-plusg 12864  df-mulr 12865  df-0g 13032  df-mgm 13130  df-sgrp 13176  df-mnd 13191  df-mhm 13233  df-grp 13277  df-ghm 13519  df-mgp 13625  df-ur 13664  df-ring 13702  df-rhm 13856
This theorem is referenced by:  rhmdvdsr  13879  rhmopp  13880  rhmunitinv  13882  znidom  14361  znidomb  14362  znunit  14363  znrrg  14364  lgseisenlem3  15491  lgseisenlem4  15492
  Copyright terms: Public domain W3C validator