Proof of Theorem rhmmul
Step | Hyp | Ref
| Expression |
1 | | eqid 2189 |
. . . . 5
⊢
(mulGrp‘𝑅) =
(mulGrp‘𝑅) |
2 | | eqid 2189 |
. . . . 5
⊢
(mulGrp‘𝑆) =
(mulGrp‘𝑆) |
3 | 1, 2 | rhmmhm 13534 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
4 | 3 | 3ad2ant1 1020 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆))) |
5 | | simp2 1000 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ 𝑋) |
6 | | rhmrcl1 13530 |
. . . . . . 7
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring) |
7 | | rhmmul.x |
. . . . . . . 8
⊢ 𝑋 = (Base‘𝑅) |
8 | 1, 7 | mgpbasg 13305 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑋 =
(Base‘(mulGrp‘𝑅))) |
9 | 6, 8 | syl 14 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑋 = (Base‘(mulGrp‘𝑅))) |
10 | 9 | eleq2d 2259 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (Base‘(mulGrp‘𝑅)))) |
11 | 10 | 3ad2ant1 1020 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (Base‘(mulGrp‘𝑅)))) |
12 | 5, 11 | mpbid 147 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐴 ∈ (Base‘(mulGrp‘𝑅))) |
13 | | simp3 1001 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ 𝑋) |
14 | 9 | eleq2d 2259 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ (Base‘(mulGrp‘𝑅)))) |
15 | 14 | 3ad2ant1 1020 |
. . . 4
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐵 ∈ 𝑋 ↔ 𝐵 ∈ (Base‘(mulGrp‘𝑅)))) |
16 | 13, 15 | mpbid 147 |
. . 3
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → 𝐵 ∈ (Base‘(mulGrp‘𝑅))) |
17 | | eqid 2189 |
. . . 4
⊢
(Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅)) |
18 | | eqid 2189 |
. . . 4
⊢
(+g‘(mulGrp‘𝑅)) =
(+g‘(mulGrp‘𝑅)) |
19 | | eqid 2189 |
. . . 4
⊢
(+g‘(mulGrp‘𝑆)) =
(+g‘(mulGrp‘𝑆)) |
20 | 17, 18, 19 | mhmlin 12942 |
. . 3
⊢ ((𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ∧ 𝐴 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝐵 ∈ (Base‘(mulGrp‘𝑅))) → (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹‘𝐴)(+g‘(mulGrp‘𝑆))(𝐹‘𝐵))) |
21 | 4, 12, 16, 20 | syl3anc 1249 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹‘𝐴)(+g‘(mulGrp‘𝑆))(𝐹‘𝐵))) |
22 | | rhmmul.m |
. . . . . . . 8
⊢ · =
(.r‘𝑅) |
23 | 1, 22 | mgpplusgg 13303 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → · =
(+g‘(mulGrp‘𝑅))) |
24 | 6, 23 | syl 14 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → · =
(+g‘(mulGrp‘𝑅))) |
25 | 24 | oveqd 5917 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐴 · 𝐵) = (𝐴(+g‘(mulGrp‘𝑅))𝐵)) |
26 | 25 | fveq2d 5541 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(𝐴 · 𝐵)) = (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵))) |
27 | | rhmrcl2 13531 |
. . . . . 6
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring) |
28 | | rhmmul.n |
. . . . . . 7
⊢ × =
(.r‘𝑆) |
29 | 2, 28 | mgpplusgg 13303 |
. . . . . 6
⊢ (𝑆 ∈ Ring → × =
(+g‘(mulGrp‘𝑆))) |
30 | 27, 29 | syl 14 |
. . . . 5
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → × =
(+g‘(mulGrp‘𝑆))) |
31 | 30 | oveqd 5917 |
. . . 4
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘𝐴) × (𝐹‘𝐵)) = ((𝐹‘𝐴)(+g‘(mulGrp‘𝑆))(𝐹‘𝐵))) |
32 | 26, 31 | eqeq12d 2204 |
. . 3
⊢ (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)) ↔ (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹‘𝐴)(+g‘(mulGrp‘𝑆))(𝐹‘𝐵)))) |
33 | 32 | 3ad2ant1 1020 |
. 2
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → ((𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵)) ↔ (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹‘𝐴)(+g‘(mulGrp‘𝑆))(𝐹‘𝐵)))) |
34 | 21, 33 | mpbird 167 |
1
⊢ ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹‘𝐴) × (𝐹‘𝐵))) |