ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rhmmul GIF version

Theorem rhmmul 14122
Description: A homomorphism of rings preserves multiplication. (Contributed by Mario Carneiro, 12-Jun-2015.)
Hypotheses
Ref Expression
rhmmul.x 𝑋 = (Base‘𝑅)
rhmmul.m · = (.r𝑅)
rhmmul.n × = (.r𝑆)
Assertion
Ref Expression
rhmmul ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))

Proof of Theorem rhmmul
StepHypRef Expression
1 eqid 2229 . . . . 5 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 eqid 2229 . . . . 5 (mulGrp‘𝑆) = (mulGrp‘𝑆)
31, 2rhmmhm 14117 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
433ad2ant1 1042 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)))
5 simp2 1022 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝐴𝑋)
6 rhmrcl1 14113 . . . . . . 7 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
7 rhmmul.x . . . . . . . 8 𝑋 = (Base‘𝑅)
81, 7mgpbasg 13884 . . . . . . 7 (𝑅 ∈ Ring → 𝑋 = (Base‘(mulGrp‘𝑅)))
96, 8syl 14 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑋 = (Base‘(mulGrp‘𝑅)))
109eleq2d 2299 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐴𝑋𝐴 ∈ (Base‘(mulGrp‘𝑅))))
11103ad2ant1 1042 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝑋𝐴 ∈ (Base‘(mulGrp‘𝑅))))
125, 11mpbid 147 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝐴 ∈ (Base‘(mulGrp‘𝑅)))
13 simp3 1023 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝐵𝑋)
149eleq2d 2299 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐵𝑋𝐵 ∈ (Base‘(mulGrp‘𝑅))))
15143ad2ant1 1042 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝑋𝐵 ∈ (Base‘(mulGrp‘𝑅))))
1613, 15mpbid 147 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → 𝐵 ∈ (Base‘(mulGrp‘𝑅)))
17 eqid 2229 . . . 4 (Base‘(mulGrp‘𝑅)) = (Base‘(mulGrp‘𝑅))
18 eqid 2229 . . . 4 (+g‘(mulGrp‘𝑅)) = (+g‘(mulGrp‘𝑅))
19 eqid 2229 . . . 4 (+g‘(mulGrp‘𝑆)) = (+g‘(mulGrp‘𝑆))
2017, 18, 19mhmlin 13495 . . 3 ((𝐹 ∈ ((mulGrp‘𝑅) MndHom (mulGrp‘𝑆)) ∧ 𝐴 ∈ (Base‘(mulGrp‘𝑅)) ∧ 𝐵 ∈ (Base‘(mulGrp‘𝑅))) → (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹𝐴)(+g‘(mulGrp‘𝑆))(𝐹𝐵)))
214, 12, 16, 20syl3anc 1271 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹𝐴)(+g‘(mulGrp‘𝑆))(𝐹𝐵)))
22 rhmmul.m . . . . . . . 8 · = (.r𝑅)
231, 22mgpplusgg 13882 . . . . . . 7 (𝑅 ∈ Ring → · = (+g‘(mulGrp‘𝑅)))
246, 23syl 14 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → · = (+g‘(mulGrp‘𝑅)))
2524oveqd 6017 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐴 · 𝐵) = (𝐴(+g‘(mulGrp‘𝑅))𝐵))
2625fveq2d 5630 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(𝐴 · 𝐵)) = (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)))
27 rhmrcl2 14114 . . . . . 6 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑆 ∈ Ring)
28 rhmmul.n . . . . . . 7 × = (.r𝑆)
292, 28mgpplusgg 13882 . . . . . 6 (𝑆 ∈ Ring → × = (+g‘(mulGrp‘𝑆)))
3027, 29syl 14 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → × = (+g‘(mulGrp‘𝑆)))
3130oveqd 6017 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹𝐴) × (𝐹𝐵)) = ((𝐹𝐴)(+g‘(mulGrp‘𝑆))(𝐹𝐵)))
3226, 31eqeq12d 2244 . . 3 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)) ↔ (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹𝐴)(+g‘(mulGrp‘𝑆))(𝐹𝐵))))
33323ad2ant1 1042 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → ((𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)) ↔ (𝐹‘(𝐴(+g‘(mulGrp‘𝑅))𝐵)) = ((𝐹𝐴)(+g‘(mulGrp‘𝑆))(𝐹𝐵))))
3421, 33mpbird 167 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴𝑋𝐵𝑋) → (𝐹‘(𝐴 · 𝐵)) = ((𝐹𝐴) × (𝐹𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 1002   = wceq 1395  wcel 2200  cfv 5317  (class class class)co 6000  Basecbs 13027  +gcplusg 13105  .rcmulr 13106   MndHom cmhm 13485  mulGrpcmgp 13878  Ringcrg 13954   RingHom crh 14108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-map 6795  df-pnf 8179  df-mnf 8180  df-ltxr 8182  df-inn 9107  df-2 9165  df-3 9166  df-ndx 13030  df-slot 13031  df-base 13033  df-sets 13034  df-plusg 13118  df-mulr 13119  df-0g 13286  df-mgm 13384  df-sgrp 13430  df-mnd 13445  df-mhm 13487  df-grp 13531  df-ghm 13773  df-mgp 13879  df-ur 13918  df-ring 13956  df-rhm 14110
This theorem is referenced by:  rhmdvdsr  14133  rhmopp  14134  rhmunitinv  14136  znidom  14615  znidomb  14616  znunit  14617  znrrg  14618  lgseisenlem3  15745  lgseisenlem4  15746
  Copyright terms: Public domain W3C validator