| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringlidm | GIF version | ||
| Description: The unity element of a ring is a left multiplicative identity. (Contributed by NM, 15-Sep-2011.) |
| Ref | Expression |
|---|---|
| rngidm.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngidm.t | ⊢ · = (.r‘𝑅) |
| rngidm.u | ⊢ 1 = (1r‘𝑅) |
| Ref | Expression |
|---|---|
| ringlidm | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngidm.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
| 2 | rngidm.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 3 | rngidm.u | . . 3 ⊢ 1 = (1r‘𝑅) | |
| 4 | 1, 2, 3 | ringidmlem 13869 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 1 · 𝑋) = 𝑋 ∧ (𝑋 · 1 ) = 𝑋)) |
| 5 | 4 | simpld 112 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 1 · 𝑋) = 𝑋) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1373 ∈ wcel 2177 ‘cfv 5285 (class class class)co 5962 Basecbs 12917 .rcmulr 12995 1rcur 13806 Ringcrg 13843 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-addass 8057 ax-i2m1 8060 ax-0lt1 8061 ax-0id 8063 ax-rnegex 8064 ax-pre-ltirr 8067 ax-pre-ltadd 8071 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-pnf 8139 df-mnf 8140 df-ltxr 8142 df-inn 9067 df-2 9125 df-3 9126 df-ndx 12920 df-slot 12921 df-base 12923 df-sets 12924 df-plusg 13007 df-mulr 13008 df-0g 13175 df-mgm 13273 df-sgrp 13319 df-mnd 13334 df-mgp 13768 df-ur 13807 df-ring 13845 |
| This theorem is referenced by: ringo2times 13875 ringidss 13876 ringcom 13878 ring1eq0 13895 ringinvnzdiv 13897 ringnegl 13898 ringressid 13910 imasring 13911 opprring 13926 dvdsrid 13947 unitmulcl 13960 unitgrp 13963 1rinv 13975 dvreq1 13989 ringinvdv 13992 subrginv 14084 issubrg2 14088 unitrrg 14114 sralmod 14297 mulgrhm 14456 |
| Copyright terms: Public domain | W3C validator |