| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ringlz | GIF version | ||
| Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.) |
| Ref | Expression |
|---|---|
| rngz.b | ⊢ 𝐵 = (Base‘𝑅) |
| rngz.t | ⊢ · = (.r‘𝑅) |
| rngz.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| ringlz | ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringgrp 13972 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) | |
| 2 | rngz.b | . . . . . . 7 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | rngz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 4 | 2, 3 | grpidcl 13570 | . . . . . 6 ⊢ (𝑅 ∈ Grp → 0 ∈ 𝐵) |
| 5 | eqid 2229 | . . . . . . 7 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 6 | 2, 5, 3 | grplid 13572 | . . . . . 6 ⊢ ((𝑅 ∈ Grp ∧ 0 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 7 | 1, 4, 6 | syl2anc2 412 | . . . . 5 ⊢ (𝑅 ∈ Ring → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 8 | 7 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 (+g‘𝑅) 0 ) = 0 ) |
| 9 | 8 | oveq1d 6022 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = ( 0 · 𝑋)) |
| 10 | 1, 4 | syl 14 | . . . . . 6 ⊢ (𝑅 ∈ Ring → 0 ∈ 𝐵) |
| 11 | 10 | adantr 276 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 0 ∈ 𝐵) |
| 12 | simpr 110 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑋 ∈ 𝐵) | |
| 13 | 11, 11, 12 | 3jca 1201 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) |
| 14 | rngz.t | . . . . 5 ⊢ · = (.r‘𝑅) | |
| 15 | 2, 5, 14 | ringdir 13990 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ ( 0 ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵)) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
| 16 | 13, 15 | syldan 282 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 0 (+g‘𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋))) |
| 17 | 1 | adantr 276 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 18 | simpl 109 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → 𝑅 ∈ Ring) | |
| 19 | 2, 14 | ringcl 13984 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 0 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
| 20 | 18, 11, 12, 19 | syl3anc 1271 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) ∈ 𝐵) |
| 21 | 2, 5, 3 | grprid 13573 | . . . . 5 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅) 0 ) = ( 0 · 𝑋)) |
| 22 | 21 | eqcomd 2235 | . . . 4 ⊢ ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
| 23 | 17, 20, 22 | syl2anc 411 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
| 24 | 9, 16, 23 | 3eqtr3d 2270 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → (( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 )) |
| 25 | 2, 5 | grplcan 13603 | . . 3 ⊢ ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵 ∧ 0 ∈ 𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
| 26 | 17, 20, 11, 20, 25 | syl13anc 1273 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ((( 0 · 𝑋)(+g‘𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g‘𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 )) |
| 27 | 24, 26 | mpbid 147 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵) → ( 0 · 𝑋) = 0 ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∧ w3a 1002 = wceq 1395 ∈ wcel 2200 ‘cfv 5318 (class class class)co 6007 Basecbs 13040 +gcplusg 13118 .rcmulr 13119 0gc0g 13297 Grpcgrp 13541 Ringcrg 13967 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-addass 8109 ax-i2m1 8112 ax-0lt1 8113 ax-0id 8115 ax-rnegex 8116 ax-pre-ltirr 8119 ax-pre-ltadd 8123 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-pnf 8191 df-mnf 8192 df-ltxr 8194 df-inn 9119 df-2 9177 df-3 9178 df-ndx 13043 df-slot 13044 df-base 13046 df-sets 13047 df-plusg 13131 df-mulr 13132 df-0g 13299 df-mgm 13397 df-sgrp 13443 df-mnd 13458 df-grp 13544 df-minusg 13545 df-mgp 13892 df-ring 13969 |
| This theorem is referenced by: ringlzd 14016 ringsrg 14018 ring1eq0 14019 ringnegl 14022 mulgass2 14029 dvdsr01 14076 0unit 14101 domneq0 14244 |
| Copyright terms: Public domain | W3C validator |