ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringlz GIF version

Theorem ringlz 13849
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
rngz.b 𝐵 = (Base‘𝑅)
rngz.t · = (.r𝑅)
rngz.z 0 = (0g𝑅)
Assertion
Ref Expression
ringlz ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )

Proof of Theorem ringlz
StepHypRef Expression
1 ringgrp 13807 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 rngz.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 rngz.z . . . . . . 7 0 = (0g𝑅)
42, 3grpidcl 13405 . . . . . 6 (𝑅 ∈ Grp → 0𝐵)
5 eqid 2206 . . . . . . 7 (+g𝑅) = (+g𝑅)
62, 5, 3grplid 13407 . . . . . 6 ((𝑅 ∈ Grp ∧ 0𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
71, 4, 6syl2anc2 412 . . . . 5 (𝑅 ∈ Ring → ( 0 (+g𝑅) 0 ) = 0 )
87adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
98oveq1d 5966 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = ( 0 · 𝑋))
101, 4syl 14 . . . . . 6 (𝑅 ∈ Ring → 0𝐵)
1110adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 0𝐵)
12 simpr 110 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋𝐵)
1311, 11, 123jca 1180 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0𝐵0𝐵𝑋𝐵))
14 rngz.t . . . . 5 · = (.r𝑅)
152, 5, 14ringdir 13825 . . . 4 ((𝑅 ∈ Ring ∧ ( 0𝐵0𝐵𝑋𝐵)) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
1613, 15syldan 282 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
171adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
18 simpl 109 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
192, 14ringcl 13819 . . . . 5 ((𝑅 ∈ Ring ∧ 0𝐵𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
2018, 11, 12, 19syl3anc 1250 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
212, 5, 3grprid 13408 . . . . 5 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g𝑅) 0 ) = ( 0 · 𝑋))
2221eqcomd 2212 . . . 4 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2317, 20, 22syl2anc 411 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
249, 16, 233eqtr3d 2247 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ))
252, 5grplcan 13438 . . 3 ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵0𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
2617, 20, 11, 20, 25syl13anc 1252 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
2724, 26mpbid 147 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981   = wceq 1373  wcel 2177  cfv 5276  (class class class)co 5951  Basecbs 12876  +gcplusg 12953  .rcmulr 12954  0gc0g 13132  Grpcgrp 13376  Ringcrg 13802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484  ax-setind 4589  ax-cnex 8023  ax-resscn 8024  ax-1cn 8025  ax-1re 8026  ax-icn 8027  ax-addcl 8028  ax-addrcl 8029  ax-mulcl 8030  ax-addcom 8032  ax-addass 8034  ax-i2m1 8037  ax-0lt1 8038  ax-0id 8040  ax-rnegex 8041  ax-pre-ltirr 8044  ax-pre-ltadd 8048
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3000  df-csb 3095  df-dif 3169  df-un 3171  df-in 3173  df-ss 3180  df-nul 3462  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-int 3888  df-iun 3931  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-f 5280  df-f1 5281  df-fo 5282  df-f1o 5283  df-fv 5284  df-riota 5906  df-ov 5954  df-oprab 5955  df-mpo 5956  df-pnf 8116  df-mnf 8117  df-ltxr 8119  df-inn 9044  df-2 9102  df-3 9103  df-ndx 12879  df-slot 12880  df-base 12882  df-sets 12883  df-plusg 12966  df-mulr 12967  df-0g 13134  df-mgm 13232  df-sgrp 13278  df-mnd 13293  df-grp 13379  df-minusg 13380  df-mgp 13727  df-ring 13804
This theorem is referenced by:  ringlzd  13851  ringsrg  13853  ring1eq0  13854  ringnegl  13857  mulgass2  13864  dvdsr01  13910  0unit  13935  domneq0  14078
  Copyright terms: Public domain W3C validator