ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringlz GIF version

Theorem ringlz 14014
Description: The zero of a unital ring is a left-absorbing element. (Contributed by FL, 31-Aug-2009.)
Hypotheses
Ref Expression
rngz.b 𝐵 = (Base‘𝑅)
rngz.t · = (.r𝑅)
rngz.z 0 = (0g𝑅)
Assertion
Ref Expression
ringlz ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )

Proof of Theorem ringlz
StepHypRef Expression
1 ringgrp 13972 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
2 rngz.b . . . . . . 7 𝐵 = (Base‘𝑅)
3 rngz.z . . . . . . 7 0 = (0g𝑅)
42, 3grpidcl 13570 . . . . . 6 (𝑅 ∈ Grp → 0𝐵)
5 eqid 2229 . . . . . . 7 (+g𝑅) = (+g𝑅)
62, 5, 3grplid 13572 . . . . . 6 ((𝑅 ∈ Grp ∧ 0𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
71, 4, 6syl2anc2 412 . . . . 5 (𝑅 ∈ Ring → ( 0 (+g𝑅) 0 ) = 0 )
87adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 (+g𝑅) 0 ) = 0 )
98oveq1d 6022 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = ( 0 · 𝑋))
101, 4syl 14 . . . . . 6 (𝑅 ∈ Ring → 0𝐵)
1110adantr 276 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 0𝐵)
12 simpr 110 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑋𝐵)
1311, 11, 123jca 1201 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0𝐵0𝐵𝑋𝐵))
14 rngz.t . . . . 5 · = (.r𝑅)
152, 5, 14ringdir 13990 . . . 4 ((𝑅 ∈ Ring ∧ ( 0𝐵0𝐵𝑋𝐵)) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
1613, 15syldan 282 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 (+g𝑅) 0 ) · 𝑋) = (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)))
171adantr 276 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Grp)
18 simpl 109 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → 𝑅 ∈ Ring)
192, 14ringcl 13984 . . . . 5 ((𝑅 ∈ Ring ∧ 0𝐵𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
2018, 11, 12, 19syl3anc 1271 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) ∈ 𝐵)
212, 5, 3grprid 13573 . . . . 5 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → (( 0 · 𝑋)(+g𝑅) 0 ) = ( 0 · 𝑋))
2221eqcomd 2235 . . . 4 ((𝑅 ∈ Grp ∧ ( 0 · 𝑋) ∈ 𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
2317, 20, 22syl2anc 411 . . 3 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = (( 0 · 𝑋)(+g𝑅) 0 ))
249, 16, 233eqtr3d 2270 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → (( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ))
252, 5grplcan 13603 . . 3 ((𝑅 ∈ Grp ∧ (( 0 · 𝑋) ∈ 𝐵0𝐵 ∧ ( 0 · 𝑋) ∈ 𝐵)) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
2617, 20, 11, 20, 25syl13anc 1273 . 2 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ((( 0 · 𝑋)(+g𝑅)( 0 · 𝑋)) = (( 0 · 𝑋)(+g𝑅) 0 ) ↔ ( 0 · 𝑋) = 0 ))
2724, 26mpbid 147 1 ((𝑅 ∈ Ring ∧ 𝑋𝐵) → ( 0 · 𝑋) = 0 )
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 1002   = wceq 1395  wcel 2200  cfv 5318  (class class class)co 6007  Basecbs 13040  +gcplusg 13118  .rcmulr 13119  0gc0g 13297  Grpcgrp 13541  Ringcrg 13967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-pre-ltirr 8119  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-pnf 8191  df-mnf 8192  df-ltxr 8194  df-inn 9119  df-2 9177  df-3 9178  df-ndx 13043  df-slot 13044  df-base 13046  df-sets 13047  df-plusg 13131  df-mulr 13132  df-0g 13299  df-mgm 13397  df-sgrp 13443  df-mnd 13458  df-grp 13544  df-minusg 13545  df-mgp 13892  df-ring 13969
This theorem is referenced by:  ringlzd  14016  ringsrg  14018  ring1eq0  14019  ringnegl  14022  mulgass2  14029  dvdsr01  14076  0unit  14101  domneq0  14244
  Copyright terms: Public domain W3C validator