ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rpreccld Unicode version

Theorem rpreccld 9710
Description: Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
Hypothesis
Ref Expression
rpred.1  |-  ( ph  ->  A  e.  RR+ )
Assertion
Ref Expression
rpreccld  |-  ( ph  ->  ( 1  /  A
)  e.  RR+ )

Proof of Theorem rpreccld
StepHypRef Expression
1 rpred.1 . 2  |-  ( ph  ->  A  e.  RR+ )
2 rpreccl 9683 . 2  |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR+ )
31, 2syl 14 1  |-  ( ph  ->  ( 1  /  A
)  e.  RR+ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2148  (class class class)co 5878   1c1 7815    / cdiv 8632   RR+crp 9656
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-cnex 7905  ax-resscn 7906  ax-1cn 7907  ax-1re 7908  ax-icn 7909  ax-addcl 7910  ax-addrcl 7911  ax-mulcl 7912  ax-mulrcl 7913  ax-addcom 7914  ax-mulcom 7915  ax-addass 7916  ax-mulass 7917  ax-distr 7918  ax-i2m1 7919  ax-0lt1 7920  ax-1rid 7921  ax-0id 7922  ax-rnegex 7923  ax-precex 7924  ax-cnre 7925  ax-pre-ltirr 7926  ax-pre-ltwlin 7927  ax-pre-lttrn 7928  ax-pre-apti 7929  ax-pre-ltadd 7930  ax-pre-mulgt0 7931  ax-pre-mulext 7932
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-po 4298  df-iso 4299  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-riota 5834  df-ov 5881  df-oprab 5882  df-mpo 5883  df-pnf 7997  df-mnf 7998  df-xr 7999  df-ltxr 8000  df-le 8001  df-sub 8133  df-neg 8134  df-reap 8535  df-ap 8542  df-div 8633  df-rp 9657
This theorem is referenced by:  rprecred  9711  expcnvap0  11513  cvgratnnlembern  11534  cvgratnnlemfm  11540  cvgratnnlemrate  11541  cvgratnn  11542  eflegeo  11712  eirraplem  11787  rpdivcxp  14472  iooref1o  14923  trilpolemclim  14925  trilpolemisumle  14927  trilpolemeq1  14929  trilpolemlt1  14930  nconstwlpolemgt0  14953
  Copyright terms: Public domain W3C validator