ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqfveqg Unicode version

Theorem seqfveqg 10572
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqfveq.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
seqfveq.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  k ) )
seqfveqg.p  |-  ( ph  ->  .+  e.  V )
seqfveqg.f  |-  ( ph  ->  F  e.  W )
seqfveqg.g  |-  ( ph  ->  G  e.  X )
Assertion
Ref Expression
seqfveqg  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Distinct variable groups:    k, F    k, G    k, M    k, N    ph, k
Allowed substitution hints:    .+ ( k)    V( k)    W( k)    X( k)

Proof of Theorem seqfveqg
StepHypRef Expression
1 seqfveq.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 9608 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . 3  |-  ( ph  ->  M  e.  ZZ )
43uzidd 9618 . 2  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
5 seqfveqg.f . . . 4  |-  ( ph  ->  F  e.  W )
6 seqfveqg.p . . . 4  |-  ( ph  ->  .+  e.  V )
7 seq1g 10557 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  W  /\  .+  e.  V )  -> 
(  seq M (  .+  ,  F ) `  M
)  =  ( F `
 M ) )
83, 5, 6, 7syl3anc 1249 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
9 fveq2 5559 . . . . 5  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
10 fveq2 5559 . . . . 5  |-  ( k  =  M  ->  ( G `  k )  =  ( G `  M ) )
119, 10eqeq12d 2211 . . . 4  |-  ( k  =  M  ->  (
( F `  k
)  =  ( G `
 k )  <->  ( F `  M )  =  ( G `  M ) ) )
12 seqfveq.2 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  k ) )
1312ralrimiva 2570 . . . 4  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  =  ( G `
 k ) )
14 eluzfz1 10108 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
151, 14syl 14 . . . 4  |-  ( ph  ->  M  e.  ( M ... N ) )
1611, 13, 15rspcdva 2873 . . 3  |-  ( ph  ->  ( F `  M
)  =  ( G `
 M ) )
178, 16eqtrd 2229 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( G `  M
) )
18 seqfveqg.g . 2  |-  ( ph  ->  G  e.  X )
19 fzp1ss 10150 . . . . 5  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
203, 19syl 14 . . . 4  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
2120sselda 3184 . . 3  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
2221, 12syldan 282 . 2  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  k )  =  ( G `  k ) )
234, 17, 6, 5, 18, 1, 22seqfveq2g 10571 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   ` cfv 5259  (class class class)co 5923   1c1 7882    + caddc 7884   ZZcz 9328   ZZ>=cuz 9603   ...cfz 10085    seqcseq 10541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7972  ax-resscn 7973  ax-1cn 7974  ax-1re 7975  ax-icn 7976  ax-addcl 7977  ax-addrcl 7978  ax-mulcl 7979  ax-addcom 7981  ax-addass 7983  ax-distr 7985  ax-i2m1 7986  ax-0lt1 7987  ax-0id 7989  ax-rnegex 7990  ax-cnre 7992  ax-pre-ltirr 7993  ax-pre-ltwlin 7994  ax-pre-lttrn 7995  ax-pre-ltadd 7997
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5878  df-ov 5926  df-oprab 5927  df-mpo 5928  df-1st 6199  df-2nd 6200  df-recs 6364  df-frec 6450  df-pnf 8065  df-mnf 8066  df-xr 8067  df-ltxr 8068  df-le 8069  df-sub 8201  df-neg 8202  df-inn 8993  df-n0 9252  df-z 9329  df-uz 9604  df-fz 10086  df-seqfrec 10542
This theorem is referenced by:  seqf1oglem2  10614  seqf1og  10615
  Copyright terms: Public domain W3C validator