| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > seqfveqg | GIF version | ||
| Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.) |
| Ref | Expression |
|---|---|
| seqfveq.1 | ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
| seqfveq.2 | ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| seqfveqg.p | ⊢ (𝜑 → + ∈ 𝑉) |
| seqfveqg.f | ⊢ (𝜑 → 𝐹 ∈ 𝑊) |
| seqfveqg.g | ⊢ (𝜑 → 𝐺 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| seqfveqg | ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfveq.1 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) | |
| 2 | eluzel2 9715 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ ℤ) | |
| 3 | 1, 2 | syl 14 | . . 3 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 4 | 3 | uzidd 9725 | . 2 ⊢ (𝜑 → 𝑀 ∈ (ℤ≥‘𝑀)) |
| 5 | seqfveqg.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝑊) | |
| 6 | seqfveqg.p | . . . 4 ⊢ (𝜑 → + ∈ 𝑉) | |
| 7 | seq1g 10672 | . . . 4 ⊢ ((𝑀 ∈ ℤ ∧ 𝐹 ∈ 𝑊 ∧ + ∈ 𝑉) → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) | |
| 8 | 3, 5, 6, 7 | syl3anc 1271 | . . 3 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹‘𝑀)) |
| 9 | fveq2 5623 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝐹‘𝑘) = (𝐹‘𝑀)) | |
| 10 | fveq2 5623 | . . . . 5 ⊢ (𝑘 = 𝑀 → (𝐺‘𝑘) = (𝐺‘𝑀)) | |
| 11 | 9, 10 | eqeq12d 2244 | . . . 4 ⊢ (𝑘 = 𝑀 → ((𝐹‘𝑘) = (𝐺‘𝑘) ↔ (𝐹‘𝑀) = (𝐺‘𝑀))) |
| 12 | seqfveq.2 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑀...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) | |
| 13 | 12 | ralrimiva 2603 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹‘𝑘) = (𝐺‘𝑘)) |
| 14 | eluzfz1 10215 | . . . . 5 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑀 ∈ (𝑀...𝑁)) | |
| 15 | 1, 14 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ (𝑀...𝑁)) |
| 16 | 11, 13, 15 | rspcdva 2912 | . . 3 ⊢ (𝜑 → (𝐹‘𝑀) = (𝐺‘𝑀)) |
| 17 | 8, 16 | eqtrd 2262 | . 2 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐺‘𝑀)) |
| 18 | seqfveqg.g | . 2 ⊢ (𝜑 → 𝐺 ∈ 𝑋) | |
| 19 | fzp1ss 10257 | . . . . 5 ⊢ (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) | |
| 20 | 3, 19 | syl 14 | . . . 4 ⊢ (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁)) |
| 21 | 20 | sselda 3224 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁)) |
| 22 | 21, 12 | syldan 282 | . 2 ⊢ ((𝜑 ∧ 𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
| 23 | 4, 17, 6, 5, 18, 1, 22 | seqfveq2g 10686 | 1 ⊢ (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1395 ∈ wcel 2200 ⊆ wss 3197 ‘cfv 5314 (class class class)co 5994 1c1 7988 + caddc 7990 ℤcz 9434 ℤ≥cuz 9710 ...cfz 10192 seqcseq 10656 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-addcom 8087 ax-addass 8089 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-0id 8095 ax-rnegex 8096 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-ltadd 8103 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-inn 9099 df-n0 9358 df-z 9435 df-uz 9711 df-fz 10193 df-seqfrec 10657 |
| This theorem is referenced by: seqf1oglem2 10729 seqf1og 10730 |
| Copyright terms: Public domain | W3C validator |