ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqfveqg GIF version

Theorem seqfveqg 10708
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqfveq.1 (𝜑𝑁 ∈ (ℤ𝑀))
seqfveq.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
seqfveqg.p (𝜑+𝑉)
seqfveqg.f (𝜑𝐹𝑊)
seqfveqg.g (𝜑𝐺𝑋)
Assertion
Ref Expression
seqfveqg (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝑉(𝑘)   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem seqfveqg
StepHypRef Expression
1 seqfveq.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 9735 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . 3 (𝜑𝑀 ∈ ℤ)
43uzidd 9745 . 2 (𝜑𝑀 ∈ (ℤ𝑀))
5 seqfveqg.f . . . 4 (𝜑𝐹𝑊)
6 seqfveqg.p . . . 4 (𝜑+𝑉)
7 seq1g 10693 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑊+𝑉) → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
83, 5, 6, 7syl3anc 1271 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
9 fveq2 5629 . . . . 5 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
10 fveq2 5629 . . . . 5 (𝑘 = 𝑀 → (𝐺𝑘) = (𝐺𝑀))
119, 10eqeq12d 2244 . . . 4 (𝑘 = 𝑀 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑀) = (𝐺𝑀)))
12 seqfveq.2 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
1312ralrimiva 2603 . . . 4 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺𝑘))
14 eluzfz1 10235 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
151, 14syl 14 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
1611, 13, 15rspcdva 2912 . . 3 (𝜑 → (𝐹𝑀) = (𝐺𝑀))
178, 16eqtrd 2262 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐺𝑀))
18 seqfveqg.g . 2 (𝜑𝐺𝑋)
19 fzp1ss 10277 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
203, 19syl 14 . . . 4 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
2120sselda 3224 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
2221, 12syldan 282 . 2 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
234, 17, 6, 5, 18, 1, 22seqfveq2g 10707 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1395  wcel 2200  wss 3197  cfv 5318  (class class class)co 6007  1c1 8008   + caddc 8010  cz 9454  cuz 9730  ...cfz 10212  seqcseq 10677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8098  ax-resscn 8099  ax-1cn 8100  ax-1re 8101  ax-icn 8102  ax-addcl 8103  ax-addrcl 8104  ax-mulcl 8105  ax-addcom 8107  ax-addass 8109  ax-distr 8111  ax-i2m1 8112  ax-0lt1 8113  ax-0id 8115  ax-rnegex 8116  ax-cnre 8118  ax-pre-ltirr 8119  ax-pre-ltwlin 8120  ax-pre-lttrn 8121  ax-pre-ltadd 8123
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5960  df-ov 6010  df-oprab 6011  df-mpo 6012  df-1st 6292  df-2nd 6293  df-recs 6457  df-frec 6543  df-pnf 8191  df-mnf 8192  df-xr 8193  df-ltxr 8194  df-le 8195  df-sub 8327  df-neg 8328  df-inn 9119  df-n0 9378  df-z 9455  df-uz 9731  df-fz 10213  df-seqfrec 10678
This theorem is referenced by:  seqf1oglem2  10750  seqf1og  10751
  Copyright terms: Public domain W3C validator