ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seqfveqg GIF version

Theorem seqfveqg 10555
Description: Equality of sequences. (Contributed by NM, 17-Mar-2005.) (Revised by Mario Carneiro, 27-May-2014.)
Hypotheses
Ref Expression
seqfveq.1 (𝜑𝑁 ∈ (ℤ𝑀))
seqfveq.2 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
seqfveqg.p (𝜑+𝑉)
seqfveqg.f (𝜑𝐹𝑊)
seqfveqg.g (𝜑𝐺𝑋)
Assertion
Ref Expression
seqfveqg (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘
Allowed substitution hints:   + (𝑘)   𝑉(𝑘)   𝑊(𝑘)   𝑋(𝑘)

Proof of Theorem seqfveqg
StepHypRef Expression
1 seqfveq.1 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
2 eluzel2 9603 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
31, 2syl 14 . . 3 (𝜑𝑀 ∈ ℤ)
43uzidd 9613 . 2 (𝜑𝑀 ∈ (ℤ𝑀))
5 seqfveqg.f . . . 4 (𝜑𝐹𝑊)
6 seqfveqg.p . . . 4 (𝜑+𝑉)
7 seq1g 10540 . . . 4 ((𝑀 ∈ ℤ ∧ 𝐹𝑊+𝑉) → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
83, 5, 6, 7syl3anc 1249 . . 3 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐹𝑀))
9 fveq2 5558 . . . . 5 (𝑘 = 𝑀 → (𝐹𝑘) = (𝐹𝑀))
10 fveq2 5558 . . . . 5 (𝑘 = 𝑀 → (𝐺𝑘) = (𝐺𝑀))
119, 10eqeq12d 2211 . . . 4 (𝑘 = 𝑀 → ((𝐹𝑘) = (𝐺𝑘) ↔ (𝐹𝑀) = (𝐺𝑀)))
12 seqfveq.2 . . . . 5 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
1312ralrimiva 2570 . . . 4 (𝜑 → ∀𝑘 ∈ (𝑀...𝑁)(𝐹𝑘) = (𝐺𝑘))
14 eluzfz1 10103 . . . . 5 (𝑁 ∈ (ℤ𝑀) → 𝑀 ∈ (𝑀...𝑁))
151, 14syl 14 . . . 4 (𝜑𝑀 ∈ (𝑀...𝑁))
1611, 13, 15rspcdva 2873 . . 3 (𝜑 → (𝐹𝑀) = (𝐺𝑀))
178, 16eqtrd 2229 . 2 (𝜑 → (seq𝑀( + , 𝐹)‘𝑀) = (𝐺𝑀))
18 seqfveqg.g . 2 (𝜑𝐺𝑋)
19 fzp1ss 10145 . . . . 5 (𝑀 ∈ ℤ → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
203, 19syl 14 . . . 4 (𝜑 → ((𝑀 + 1)...𝑁) ⊆ (𝑀...𝑁))
2120sselda 3183 . . 3 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → 𝑘 ∈ (𝑀...𝑁))
2221, 12syldan 282 . 2 ((𝜑𝑘 ∈ ((𝑀 + 1)...𝑁)) → (𝐹𝑘) = (𝐺𝑘))
234, 17, 6, 5, 18, 1, 22seqfveq2g 10554 1 (𝜑 → (seq𝑀( + , 𝐹)‘𝑁) = (seq𝑀( + , 𝐺)‘𝑁))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  wcel 2167  wss 3157  cfv 5258  (class class class)co 5922  1c1 7878   + caddc 7880  cz 9323  cuz 9598  ...cfz 10080  seqcseq 10524
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7968  ax-resscn 7969  ax-1cn 7970  ax-1re 7971  ax-icn 7972  ax-addcl 7973  ax-addrcl 7974  ax-mulcl 7975  ax-addcom 7977  ax-addass 7979  ax-distr 7981  ax-i2m1 7982  ax-0lt1 7983  ax-0id 7985  ax-rnegex 7986  ax-cnre 7988  ax-pre-ltirr 7989  ax-pre-ltwlin 7990  ax-pre-lttrn 7991  ax-pre-ltadd 7993
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-frec 6449  df-pnf 8061  df-mnf 8062  df-xr 8063  df-ltxr 8064  df-le 8065  df-sub 8197  df-neg 8198  df-inn 8988  df-n0 9247  df-z 9324  df-uz 9599  df-fz 10081  df-seqfrec 10525
This theorem is referenced by:  seqf1oglem2  10597  seqf1og  10598
  Copyright terms: Public domain W3C validator