ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  seq3fveq Unicode version

Theorem seq3fveq 10588
Description: Equality of sequences. (Contributed by Jim Kingdon, 4-Jun-2020.)
Hypotheses
Ref Expression
iseqfveq.1  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
iseqfveq.2  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  k ) )
iseqfveq.f  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
iseqfveq.g  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
iseqfveq.pl  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
Assertion
Ref Expression
seq3fveq  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Distinct variable groups:    x, k, y, F    k, G, x, y    k, M, x, y    k, N, x, y    ph, k, x, y    .+ , k, x, y    S, k, x, y

Proof of Theorem seq3fveq
StepHypRef Expression
1 iseqfveq.1 . . . 4  |-  ( ph  ->  N  e.  ( ZZ>= `  M ) )
2 eluzel2 9623 . . . 4  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
31, 2syl 14 . . 3  |-  ( ph  ->  M  e.  ZZ )
4 uzid 9632 . . 3  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
53, 4syl 14 . 2  |-  ( ph  ->  M  e.  ( ZZ>= `  M ) )
6 iseqfveq.f . . . 4  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( F `  x )  e.  S
)
7 iseqfveq.pl . . . 4  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  .+  y
)  e.  S )
83, 6, 7seq3-1 10571 . . 3  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( F `  M
) )
9 fveq2 5561 . . . . 5  |-  ( k  =  M  ->  ( F `  k )  =  ( F `  M ) )
10 fveq2 5561 . . . . 5  |-  ( k  =  M  ->  ( G `  k )  =  ( G `  M ) )
119, 10eqeq12d 2211 . . . 4  |-  ( k  =  M  ->  (
( F `  k
)  =  ( G `
 k )  <->  ( F `  M )  =  ( G `  M ) ) )
12 iseqfveq.2 . . . . 5  |-  ( (
ph  /\  k  e.  ( M ... N ) )  ->  ( F `  k )  =  ( G `  k ) )
1312ralrimiva 2570 . . . 4  |-  ( ph  ->  A. k  e.  ( M ... N ) ( F `  k
)  =  ( G `
 k ) )
14 eluzfz1 10123 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ( M ... N ) )
151, 14syl 14 . . . 4  |-  ( ph  ->  M  e.  ( M ... N ) )
1611, 13, 15rspcdva 2873 . . 3  |-  ( ph  ->  ( F `  M
)  =  ( G `
 M ) )
178, 16eqtrd 2229 . 2  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 M )  =  ( G `  M
) )
18 iseqfveq.g . 2  |-  ( (
ph  /\  x  e.  ( ZZ>= `  M )
)  ->  ( G `  x )  e.  S
)
19 fzp1ss 10165 . . . . 5  |-  ( M  e.  ZZ  ->  (
( M  +  1 ) ... N ) 
C_  ( M ... N ) )
203, 19syl 14 . . . 4  |-  ( ph  ->  ( ( M  + 
1 ) ... N
)  C_  ( M ... N ) )
2120sselda 3184 . . 3  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  k  e.  ( M ... N
) )
2221, 12syldan 282 . 2  |-  ( (
ph  /\  k  e.  ( ( M  + 
1 ) ... N
) )  ->  ( F `  k )  =  ( G `  k ) )
235, 17, 6, 18, 7, 1, 22seq3fveq2 10584 1  |-  ( ph  ->  (  seq M ( 
.+  ,  F ) `
 N )  =  (  seq M ( 
.+  ,  G ) `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   ` cfv 5259  (class class class)co 5925   1c1 7897    + caddc 7899   ZZcz 9343   ZZ>=cuz 9618   ...cfz 10100    seqcseq 10556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101  df-seqfrec 10557
This theorem is referenced by:  seq3feq  10589  seq3f1olemqsumk  10621  seq3f1olemqsum  10622  seq3f1oleml  10625  seq3f1o  10626  fsum3  11569  fsum3ser  11579  fprodseq  11765  fprodntrivap  11766  mulgnngsum  13333
  Copyright terms: Public domain W3C validator