ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ringinvcl Unicode version

Theorem ringinvcl 13757
Description: The inverse of a unit is an element of the ring. (Contributed by Mario Carneiro, 2-Dec-2014.)
Hypotheses
Ref Expression
unitinvcl.1  |-  U  =  (Unit `  R )
unitinvcl.2  |-  I  =  ( invr `  R
)
ringinvcl.3  |-  B  =  ( Base `  R
)
Assertion
Ref Expression
ringinvcl  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
I `  X )  e.  B )

Proof of Theorem ringinvcl
StepHypRef Expression
1 ringinvcl.3 . . 3  |-  B  =  ( Base `  R
)
21a1i 9 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  B  =  ( Base `  R
) )
3 unitinvcl.1 . . 3  |-  U  =  (Unit `  R )
43a1i 9 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  U  =  (Unit `  R )
)
5 ringsrg 13679 . . 3  |-  ( R  e.  Ring  ->  R  e. SRing
)
65adantr 276 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  R  e. SRing )
7 unitinvcl.2 . . 3  |-  I  =  ( invr `  R
)
83, 7unitinvcl 13755 . 2  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
I `  X )  e.  U )
92, 4, 6, 8unitcld 13740 1  |-  ( ( R  e.  Ring  /\  X  e.  U )  ->  (
I `  X )  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   ` cfv 5259   Basecbs 12703  SRingcsrg 13595   Ringcrg 13628  Unitcui 13719   invrcinvr 13752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-pre-ltirr 8008  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-tpos 6312  df-pnf 8080  df-mnf 8081  df-ltxr 8083  df-inn 9008  df-2 9066  df-3 9067  df-ndx 12706  df-slot 12707  df-base 12709  df-sets 12710  df-iress 12711  df-plusg 12793  df-mulr 12794  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-minusg 13206  df-cmn 13492  df-abl 13493  df-mgp 13553  df-ur 13592  df-srg 13596  df-ring 13630  df-oppr 13700  df-dvdsr 13721  df-unit 13722  df-invr 13753
This theorem is referenced by:  1rinv  13760  0unit  13761  dvrcl  13767  dvrass  13771  dvrcan1  13772  ringinvdv  13777  subrguss  13868  subrginv  13869  subrgunit  13871  unitrrg  13899
  Copyright terms: Public domain W3C validator