ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgrpredgv Unicode version

Theorem upgrpredgv 15820
Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v  |-  V  =  (Vtx `  G )
upgredg.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
upgrpredgv  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  ( M  e.  V  /\  N  e.  V
) )

Proof of Theorem upgrpredgv
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . 4  |-  V  =  (Vtx `  G )
2 upgredg.e . . . 4  |-  E  =  (Edg `  G )
31, 2upgredg 15818 . . 3  |-  ( ( G  e. UPGraph  /\  { M ,  N }  e.  E
)  ->  E. m  e.  V  E. n  e.  V  { M ,  N }  =  {
m ,  n }
)
433adant2 1019 . 2  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  E. m  e.  V  E. n  e.  V  { M ,  N }  =  { m ,  n } )
5 preq12bg 3822 . . . . 5  |-  ( ( ( M  e.  U  /\  N  e.  W
)  /\  ( m  e.  V  /\  n  e.  V ) )  -> 
( { M ,  N }  =  {
m ,  n }  <->  ( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m ) ) ) )
653ad2antl2 1163 . . . 4  |-  ( ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  /\  ( m  e.  V  /\  n  e.  V
) )  ->  ( { M ,  N }  =  { m ,  n } 
<->  ( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m )
) ) )
7 eleq1 2269 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m  e.  V  <->  M  e.  V ) )
87eqcoms 2209 . . . . . . . . 9  |-  ( M  =  m  ->  (
m  e.  V  <->  M  e.  V ) )
98biimpd 144 . . . . . . . 8  |-  ( M  =  m  ->  (
m  e.  V  ->  M  e.  V )
)
10 eleq1 2269 . . . . . . . . . 10  |-  ( n  =  N  ->  (
n  e.  V  <->  N  e.  V ) )
1110eqcoms 2209 . . . . . . . . 9  |-  ( N  =  n  ->  (
n  e.  V  <->  N  e.  V ) )
1211biimpd 144 . . . . . . . 8  |-  ( N  =  n  ->  (
n  e.  V  ->  N  e.  V )
)
139, 12im2anan9 598 . . . . . . 7  |-  ( ( M  =  m  /\  N  =  n )  ->  ( ( m  e.  V  /\  n  e.  V )  ->  ( M  e.  V  /\  N  e.  V )
) )
1413com12 30 . . . . . 6  |-  ( ( m  e.  V  /\  n  e.  V )  ->  ( ( M  =  m  /\  N  =  n )  ->  ( M  e.  V  /\  N  e.  V )
) )
15 eleq1 2269 . . . . . . . . . . 11  |-  ( n  =  M  ->  (
n  e.  V  <->  M  e.  V ) )
1615eqcoms 2209 . . . . . . . . . 10  |-  ( M  =  n  ->  (
n  e.  V  <->  M  e.  V ) )
1716biimpd 144 . . . . . . . . 9  |-  ( M  =  n  ->  (
n  e.  V  ->  M  e.  V )
)
18 eleq1 2269 . . . . . . . . . . 11  |-  ( m  =  N  ->  (
m  e.  V  <->  N  e.  V ) )
1918eqcoms 2209 . . . . . . . . . 10  |-  ( N  =  m  ->  (
m  e.  V  <->  N  e.  V ) )
2019biimpd 144 . . . . . . . . 9  |-  ( N  =  m  ->  (
m  e.  V  ->  N  e.  V )
)
2117, 20im2anan9 598 . . . . . . . 8  |-  ( ( M  =  n  /\  N  =  m )  ->  ( ( n  e.  V  /\  m  e.  V )  ->  ( M  e.  V  /\  N  e.  V )
) )
2221com12 30 . . . . . . 7  |-  ( ( n  e.  V  /\  m  e.  V )  ->  ( ( M  =  n  /\  N  =  m )  ->  ( M  e.  V  /\  N  e.  V )
) )
2322ancoms 268 . . . . . 6  |-  ( ( m  e.  V  /\  n  e.  V )  ->  ( ( M  =  n  /\  N  =  m )  ->  ( M  e.  V  /\  N  e.  V )
) )
2414, 23jaod 719 . . . . 5  |-  ( ( m  e.  V  /\  n  e.  V )  ->  ( ( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m )
)  ->  ( M  e.  V  /\  N  e.  V ) ) )
2524adantl 277 . . . 4  |-  ( ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  /\  ( m  e.  V  /\  n  e.  V
) )  ->  (
( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m )
)  ->  ( M  e.  V  /\  N  e.  V ) ) )
266, 25sylbid 150 . . 3  |-  ( ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  /\  ( m  e.  V  /\  n  e.  V
) )  ->  ( { M ,  N }  =  { m ,  n }  ->  ( M  e.  V  /\  N  e.  V ) ) )
2726rexlimdvva 2632 . 2  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  ( E. m  e.  V  E. n  e.  V  { M ,  N }  =  {
m ,  n }  ->  ( M  e.  V  /\  N  e.  V
) ) )
284, 27mpd 13 1  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  ( M  e.  V  /\  N  e.  V
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 710    /\ w3a 981    = wceq 1373    e. wcel 2177   E.wrex 2486   {cpr 3639   ` cfv 5285  Vtxcvtx 15696  Edgcedg 15739  UPGraphcupgr 15772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-iord 4426  df-on 4428  df-suc 4431  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-1o 6520  df-2o 6521  df-en 6846  df-sub 8275  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-5 9128  df-6 9129  df-7 9130  df-8 9131  df-9 9132  df-n0 9326  df-dec 9535  df-ndx 12920  df-slot 12921  df-base 12923  df-edgf 15689  df-vtx 15698  df-iedg 15699  df-edg 15740  df-upgren 15774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator