ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  upgrpredgv Unicode version

Theorem upgrpredgv 15938
Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.)
Hypotheses
Ref Expression
upgredg.v  |-  V  =  (Vtx `  G )
upgredg.e  |-  E  =  (Edg `  G )
Assertion
Ref Expression
upgrpredgv  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  ( M  e.  V  /\  N  e.  V
) )

Proof of Theorem upgrpredgv
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgredg.v . . . 4  |-  V  =  (Vtx `  G )
2 upgredg.e . . . 4  |-  E  =  (Edg `  G )
31, 2upgredg 15936 . . 3  |-  ( ( G  e. UPGraph  /\  { M ,  N }  e.  E
)  ->  E. m  e.  V  E. n  e.  V  { M ,  N }  =  {
m ,  n }
)
433adant2 1040 . 2  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  E. m  e.  V  E. n  e.  V  { M ,  N }  =  { m ,  n } )
5 preq12bg 3850 . . . . 5  |-  ( ( ( M  e.  U  /\  N  e.  W
)  /\  ( m  e.  V  /\  n  e.  V ) )  -> 
( { M ,  N }  =  {
m ,  n }  <->  ( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m ) ) ) )
653ad2antl2 1184 . . . 4  |-  ( ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  /\  ( m  e.  V  /\  n  e.  V
) )  ->  ( { M ,  N }  =  { m ,  n } 
<->  ( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m )
) ) )
7 eleq1 2292 . . . . . . . . . 10  |-  ( m  =  M  ->  (
m  e.  V  <->  M  e.  V ) )
87eqcoms 2232 . . . . . . . . 9  |-  ( M  =  m  ->  (
m  e.  V  <->  M  e.  V ) )
98biimpd 144 . . . . . . . 8  |-  ( M  =  m  ->  (
m  e.  V  ->  M  e.  V )
)
10 eleq1 2292 . . . . . . . . . 10  |-  ( n  =  N  ->  (
n  e.  V  <->  N  e.  V ) )
1110eqcoms 2232 . . . . . . . . 9  |-  ( N  =  n  ->  (
n  e.  V  <->  N  e.  V ) )
1211biimpd 144 . . . . . . . 8  |-  ( N  =  n  ->  (
n  e.  V  ->  N  e.  V )
)
139, 12im2anan9 600 . . . . . . 7  |-  ( ( M  =  m  /\  N  =  n )  ->  ( ( m  e.  V  /\  n  e.  V )  ->  ( M  e.  V  /\  N  e.  V )
) )
1413com12 30 . . . . . 6  |-  ( ( m  e.  V  /\  n  e.  V )  ->  ( ( M  =  m  /\  N  =  n )  ->  ( M  e.  V  /\  N  e.  V )
) )
15 eleq1 2292 . . . . . . . . . . 11  |-  ( n  =  M  ->  (
n  e.  V  <->  M  e.  V ) )
1615eqcoms 2232 . . . . . . . . . 10  |-  ( M  =  n  ->  (
n  e.  V  <->  M  e.  V ) )
1716biimpd 144 . . . . . . . . 9  |-  ( M  =  n  ->  (
n  e.  V  ->  M  e.  V )
)
18 eleq1 2292 . . . . . . . . . . 11  |-  ( m  =  N  ->  (
m  e.  V  <->  N  e.  V ) )
1918eqcoms 2232 . . . . . . . . . 10  |-  ( N  =  m  ->  (
m  e.  V  <->  N  e.  V ) )
2019biimpd 144 . . . . . . . . 9  |-  ( N  =  m  ->  (
m  e.  V  ->  N  e.  V )
)
2117, 20im2anan9 600 . . . . . . . 8  |-  ( ( M  =  n  /\  N  =  m )  ->  ( ( n  e.  V  /\  m  e.  V )  ->  ( M  e.  V  /\  N  e.  V )
) )
2221com12 30 . . . . . . 7  |-  ( ( n  e.  V  /\  m  e.  V )  ->  ( ( M  =  n  /\  N  =  m )  ->  ( M  e.  V  /\  N  e.  V )
) )
2322ancoms 268 . . . . . 6  |-  ( ( m  e.  V  /\  n  e.  V )  ->  ( ( M  =  n  /\  N  =  m )  ->  ( M  e.  V  /\  N  e.  V )
) )
2414, 23jaod 722 . . . . 5  |-  ( ( m  e.  V  /\  n  e.  V )  ->  ( ( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m )
)  ->  ( M  e.  V  /\  N  e.  V ) ) )
2524adantl 277 . . . 4  |-  ( ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  /\  ( m  e.  V  /\  n  e.  V
) )  ->  (
( ( M  =  m  /\  N  =  n )  \/  ( M  =  n  /\  N  =  m )
)  ->  ( M  e.  V  /\  N  e.  V ) ) )
266, 25sylbid 150 . . 3  |-  ( ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  /\  ( m  e.  V  /\  n  e.  V
) )  ->  ( { M ,  N }  =  { m ,  n }  ->  ( M  e.  V  /\  N  e.  V ) ) )
2726rexlimdvva 2656 . 2  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  ( E. m  e.  V  E. n  e.  V  { M ,  N }  =  {
m ,  n }  ->  ( M  e.  V  /\  N  e.  V
) ) )
284, 27mpd 13 1  |-  ( ( G  e. UPGraph  /\  ( M  e.  U  /\  N  e.  W )  /\  { M ,  N }  e.  E )  ->  ( M  e.  V  /\  N  e.  V
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 713    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   {cpr 3667   ` cfv 5317  Vtxcvtx 15807  Edgcedg 15852  UPGraphcupgr 15885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-cnre 8106
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-1o 6560  df-2o 6561  df-en 6886  df-sub 8315  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-5 9168  df-6 9169  df-7 9170  df-8 9171  df-9 9172  df-n0 9366  df-dec 9575  df-ndx 13030  df-slot 13031  df-base 13033  df-edgf 15800  df-vtx 15809  df-iedg 15810  df-edg 15853  df-upgren 15887
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator