| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > upgrpredgv | GIF version | ||
| Description: An edge of a pseudograph always connects two vertices if the edge contains two sets. The two vertices/sets need not necessarily be different (loops are allowed). (Contributed by AV, 18-Nov-2021.) |
| Ref | Expression |
|---|---|
| upgredg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| upgredg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| upgrpredgv | ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | upgredg.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | upgredg.e | . . . 4 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | 1, 2 | upgredg 15818 | . . 3 ⊢ ((𝐺 ∈ UPGraph ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛}) |
| 4 | 3 | 3adant2 1019 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → ∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛}) |
| 5 | preq12bg 3822 | . . . . 5 ⊢ (((𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)))) | |
| 6 | 5 | 3ad2antl2 1163 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} ↔ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)))) |
| 7 | eleq1 2269 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑀 → (𝑚 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) | |
| 8 | 7 | eqcoms 2209 | . . . . . . . . 9 ⊢ (𝑀 = 𝑚 → (𝑚 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) |
| 9 | 8 | biimpd 144 | . . . . . . . 8 ⊢ (𝑀 = 𝑚 → (𝑚 ∈ 𝑉 → 𝑀 ∈ 𝑉)) |
| 10 | eleq1 2269 | . . . . . . . . . 10 ⊢ (𝑛 = 𝑁 → (𝑛 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | |
| 11 | 10 | eqcoms 2209 | . . . . . . . . 9 ⊢ (𝑁 = 𝑛 → (𝑛 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) |
| 12 | 11 | biimpd 144 | . . . . . . . 8 ⊢ (𝑁 = 𝑛 → (𝑛 ∈ 𝑉 → 𝑁 ∈ 𝑉)) |
| 13 | 9, 12 | im2anan9 598 | . . . . . . 7 ⊢ ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) → ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 14 | 13 | com12 30 | . . . . . 6 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 15 | eleq1 2269 | . . . . . . . . . . 11 ⊢ (𝑛 = 𝑀 → (𝑛 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) | |
| 16 | 15 | eqcoms 2209 | . . . . . . . . . 10 ⊢ (𝑀 = 𝑛 → (𝑛 ∈ 𝑉 ↔ 𝑀 ∈ 𝑉)) |
| 17 | 16 | biimpd 144 | . . . . . . . . 9 ⊢ (𝑀 = 𝑛 → (𝑛 ∈ 𝑉 → 𝑀 ∈ 𝑉)) |
| 18 | eleq1 2269 | . . . . . . . . . . 11 ⊢ (𝑚 = 𝑁 → (𝑚 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) | |
| 19 | 18 | eqcoms 2209 | . . . . . . . . . 10 ⊢ (𝑁 = 𝑚 → (𝑚 ∈ 𝑉 ↔ 𝑁 ∈ 𝑉)) |
| 20 | 19 | biimpd 144 | . . . . . . . . 9 ⊢ (𝑁 = 𝑚 → (𝑚 ∈ 𝑉 → 𝑁 ∈ 𝑉)) |
| 21 | 17, 20 | im2anan9 598 | . . . . . . . 8 ⊢ ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → ((𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 22 | 21 | com12 30 | . . . . . . 7 ⊢ ((𝑛 ∈ 𝑉 ∧ 𝑚 ∈ 𝑉) → ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 23 | 22 | ancoms 268 | . . . . . 6 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → ((𝑀 = 𝑛 ∧ 𝑁 = 𝑚) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 24 | 14, 23 | jaod 719 | . . . . 5 ⊢ ((𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉) → (((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 25 | 24 | adantl 277 | . . . 4 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → (((𝑀 = 𝑚 ∧ 𝑁 = 𝑛) ∨ (𝑀 = 𝑛 ∧ 𝑁 = 𝑚)) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 26 | 6, 25 | sylbid 150 | . . 3 ⊢ (((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) ∧ (𝑚 ∈ 𝑉 ∧ 𝑛 ∈ 𝑉)) → ({𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 27 | 26 | rexlimdvva 2632 | . 2 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (∃𝑚 ∈ 𝑉 ∃𝑛 ∈ 𝑉 {𝑀, 𝑁} = {𝑚, 𝑛} → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉))) |
| 28 | 4, 27 | mpd 13 | 1 ⊢ ((𝐺 ∈ UPGraph ∧ (𝑀 ∈ 𝑈 ∧ 𝑁 ∈ 𝑊) ∧ {𝑀, 𝑁} ∈ 𝐸) → (𝑀 ∈ 𝑉 ∧ 𝑁 ∈ 𝑉)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 ∨ wo 710 ∧ w3a 981 = wceq 1373 ∈ wcel 2177 ∃wrex 2486 {cpr 3639 ‘cfv 5285 Vtxcvtx 15696 Edgcedg 15739 UPGraphcupgr 15772 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-cnex 8046 ax-resscn 8047 ax-1cn 8048 ax-1re 8049 ax-icn 8050 ax-addcl 8051 ax-addrcl 8052 ax-mulcl 8053 ax-addcom 8055 ax-mulcom 8056 ax-addass 8057 ax-mulass 8058 ax-distr 8059 ax-i2m1 8060 ax-1rid 8062 ax-0id 8063 ax-rnegex 8064 ax-cnre 8066 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-riota 5917 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-1o 6520 df-2o 6521 df-en 6846 df-sub 8275 df-inn 9067 df-2 9125 df-3 9126 df-4 9127 df-5 9128 df-6 9129 df-7 9130 df-8 9131 df-9 9132 df-n0 9326 df-dec 9535 df-ndx 12920 df-slot 12921 df-base 12923 df-edgf 15689 df-vtx 15698 df-iedg 15699 df-edg 15740 df-upgren 15774 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |