| Step | Hyp | Ref
| Expression |
| 1 | | eluzelz 9627 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
| 2 | | eluzelz 9627 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
| 3 | | zlelttric 9388 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁)) |
| 4 | 1, 2, 3 | syl2an 289 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁)) |
| 5 | | eluz 9631 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈
(ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑘)) |
| 6 | 1, 2, 5 | syl2an 289 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑘)) |
| 7 | | eluzel2 9623 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
| 8 | | elfzm11 10183 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁))) |
| 9 | | df-3an 982 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁)) |
| 10 | 8, 9 | bitrdi 196 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
| 11 | 7, 1, 10 | syl2anr 290 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
| 12 | | eluzle 9630 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑘) |
| 13 | 2, 12 | jca 306 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
| 14 | 13 | adantl 277 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
| 15 | 14 | biantrurd 305 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 < 𝑁 ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
| 16 | 11, 15 | bitr4d 191 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑘 < 𝑁)) |
| 17 | 6, 16 | orbi12d 794 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁))) |
| 18 | 4, 17 | mpbird 167 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (ℤ≥‘𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1)))) |
| 19 | 18 | orcomd 730 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁))) |
| 20 | 19 | ex 115 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)))) |
| 21 | | elfzuz 10113 |
. . . . . 6
⊢ (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 22 | 21 | a1i 9 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ≥‘𝑀))) |
| 23 | | uztrn 9635 |
. . . . . 6
⊢ ((𝑘 ∈
(ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
| 24 | 23 | expcom 116 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ (ℤ≥‘𝑀))) |
| 25 | 22, 24 | jaod 718 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀))) |
| 26 | 20, 25 | impbid 129 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)))) |
| 27 | | elun 3305 |
. . 3
⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪
(ℤ≥‘𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁))) |
| 28 | 26, 27 | bitr4di 198 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ 𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪
(ℤ≥‘𝑁)))) |
| 29 | 28 | eqrdv 2194 |
1
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪
(ℤ≥‘𝑁))) |