ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  uzsplit GIF version

Theorem uzsplit 10122
Description: Express an upper integer set as the disjoint (see uzdisj 10123) union of the first 𝑁 values and the rest. (Contributed by Mario Carneiro, 24-Apr-2014.)
Assertion
Ref Expression
uzsplit (𝑁 ∈ (ℤ𝑀) → (ℤ𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)))

Proof of Theorem uzsplit
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 eluzelz 9567 . . . . . . . 8 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2 eluzelz 9567 . . . . . . . 8 (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℤ)
3 zlelttric 9328 . . . . . . . 8 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁𝑘𝑘 < 𝑁))
41, 2, 3syl2an 289 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑁𝑘𝑘 < 𝑁))
5 eluz 9571 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈ (ℤ𝑁) ↔ 𝑁𝑘))
61, 2, 5syl2an 289 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (ℤ𝑁) ↔ 𝑁𝑘))
7 eluzel2 9563 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑀) → 𝑀 ∈ ℤ)
8 elfzm11 10121 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < 𝑁)))
9 df-3an 982 . . . . . . . . . . 11 ((𝑘 ∈ ℤ ∧ 𝑀𝑘𝑘 < 𝑁) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑘 < 𝑁))
108, 9bitrdi 196 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑘 < 𝑁)))
117, 1, 10syl2anr 290 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑘 < 𝑁)))
12 eluzle 9570 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑀) → 𝑀𝑘)
132, 12jca 306 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ ℤ ∧ 𝑀𝑘))
1413adantl 277 . . . . . . . . . 10 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ ℤ ∧ 𝑀𝑘))
1514biantrurd 305 . . . . . . . . 9 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 < 𝑁 ↔ ((𝑘 ∈ ℤ ∧ 𝑀𝑘) ∧ 𝑘 < 𝑁)))
1611, 15bitr4d 191 . . . . . . . 8 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑘 < 𝑁))
176, 16orbi12d 794 . . . . . . 7 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ (ℤ𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝑁𝑘𝑘 < 𝑁)))
184, 17mpbird 167 . . . . . 6 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (ℤ𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1))))
1918orcomd 730 . . . . 5 ((𝑁 ∈ (ℤ𝑀) ∧ 𝑘 ∈ (ℤ𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁)))
2019ex 115 . . . 4 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁))))
21 elfzuz 10051 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀))
2221a1i 9 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ𝑀)))
23 uztrn 9574 . . . . . 6 ((𝑘 ∈ (ℤ𝑁) ∧ 𝑁 ∈ (ℤ𝑀)) → 𝑘 ∈ (ℤ𝑀))
2423expcom 116 . . . . 5 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑁) → 𝑘 ∈ (ℤ𝑀)))
2522, 24jaod 718 . . . 4 (𝑁 ∈ (ℤ𝑀) → ((𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁)) → 𝑘 ∈ (ℤ𝑀)))
2620, 25impbid 129 . . 3 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁))))
27 elun 3291 . . 3 (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ𝑁)))
2826, 27bitr4di 198 . 2 (𝑁 ∈ (ℤ𝑀) → (𝑘 ∈ (ℤ𝑀) ↔ 𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁))))
2928eqrdv 2187 1 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑀) = ((𝑀...(𝑁 − 1)) ∪ (ℤ𝑁)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  wo 709  w3a 980   = wceq 1364  wcel 2160  cun 3142   class class class wbr 4018  cfv 5235  (class class class)co 5896  1c1 7842   < clt 8022  cle 8023  cmin 8158  cz 9283  cuz 9558  ...cfz 10038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2162  ax-14 2163  ax-ext 2171  ax-sep 4136  ax-pow 4192  ax-pr 4227  ax-un 4451  ax-setind 4554  ax-cnex 7932  ax-resscn 7933  ax-1cn 7934  ax-1re 7935  ax-icn 7936  ax-addcl 7937  ax-addrcl 7938  ax-mulcl 7939  ax-addcom 7941  ax-addass 7943  ax-distr 7945  ax-i2m1 7946  ax-0lt1 7947  ax-0id 7949  ax-rnegex 7950  ax-cnre 7952  ax-pre-ltirr 7953  ax-pre-ltwlin 7954  ax-pre-lttrn 7955  ax-pre-ltadd 7957
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2041  df-mo 2042  df-clab 2176  df-cleq 2182  df-clel 2185  df-nfc 2321  df-ne 2361  df-nel 2456  df-ral 2473  df-rex 2474  df-reu 2475  df-rab 2477  df-v 2754  df-sbc 2978  df-dif 3146  df-un 3148  df-in 3150  df-ss 3157  df-pw 3592  df-sn 3613  df-pr 3614  df-op 3616  df-uni 3825  df-int 3860  df-br 4019  df-opab 4080  df-mpt 4081  df-id 4311  df-xp 4650  df-rel 4651  df-cnv 4652  df-co 4653  df-dm 4654  df-rn 4655  df-res 4656  df-ima 4657  df-iota 5196  df-fun 5237  df-fn 5238  df-f 5239  df-fv 5243  df-riota 5852  df-ov 5899  df-oprab 5900  df-mpo 5901  df-pnf 8024  df-mnf 8025  df-xr 8026  df-ltxr 8027  df-le 8028  df-sub 8160  df-neg 8161  df-inn 8950  df-n0 9207  df-z 9284  df-uz 9559  df-fz 10039
This theorem is referenced by:  nn0split  10166  nnsplit  10167
  Copyright terms: Public domain W3C validator