Step | Hyp | Ref
| Expression |
1 | | eluzelz 9475 |
. . . . . . . 8
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → 𝑁 ∈ ℤ) |
2 | | eluzelz 9475 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑘 ∈ ℤ) |
3 | | zlelttric 9236 |
. . . . . . . 8
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁)) |
4 | 1, 2, 3 | syl2an 287 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁)) |
5 | | eluz 9479 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) → (𝑘 ∈
(ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑘)) |
6 | 1, 2, 5 | syl2an 287 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (ℤ≥‘𝑁) ↔ 𝑁 ≤ 𝑘)) |
7 | | eluzel2 9471 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑀 ∈ ℤ) |
8 | | elfzm11 10026 |
. . . . . . . . . . 11
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁))) |
9 | | df-3an 970 |
. . . . . . . . . . 11
⊢ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘 ∧ 𝑘 < 𝑁) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁)) |
10 | 8, 9 | bitrdi 195 |
. . . . . . . . . 10
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
11 | 7, 1, 10 | syl2anr 288 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
12 | | eluzle 9478 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → 𝑀 ≤ 𝑘) |
13 | 2, 12 | jca 304 |
. . . . . . . . . . 11
⊢ (𝑘 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
14 | 13 | adantl 275 |
. . . . . . . . . 10
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘)) |
15 | 14 | biantrurd 303 |
. . . . . . . . 9
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 < 𝑁 ↔ ((𝑘 ∈ ℤ ∧ 𝑀 ≤ 𝑘) ∧ 𝑘 < 𝑁))) |
16 | 11, 15 | bitr4d 190 |
. . . . . . . 8
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ 𝑘 < 𝑁)) |
17 | 6, 16 | orbi12d 783 |
. . . . . . 7
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ (ℤ≥‘𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1))) ↔ (𝑁 ≤ 𝑘 ∨ 𝑘 < 𝑁))) |
18 | 4, 17 | mpbird 166 |
. . . . . 6
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (ℤ≥‘𝑁) ∨ 𝑘 ∈ (𝑀...(𝑁 − 1)))) |
19 | 18 | orcomd 719 |
. . . . 5
⊢ ((𝑁 ∈
(ℤ≥‘𝑀) ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁))) |
20 | 19 | ex 114 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)))) |
21 | | elfzuz 9956 |
. . . . . 6
⊢ (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
22 | 21 | a1i 9 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ (𝑀...(𝑁 − 1)) → 𝑘 ∈ (ℤ≥‘𝑀))) |
23 | | uztrn 9482 |
. . . . . 6
⊢ ((𝑘 ∈
(ℤ≥‘𝑁) ∧ 𝑁 ∈ (ℤ≥‘𝑀)) → 𝑘 ∈ (ℤ≥‘𝑀)) |
24 | 23 | expcom 115 |
. . . . 5
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑁) → 𝑘 ∈ (ℤ≥‘𝑀))) |
25 | 22, 24 | jaod 707 |
. . . 4
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → ((𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)) → 𝑘 ∈ (ℤ≥‘𝑀))) |
26 | 20, 25 | impbid 128 |
. . 3
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁)))) |
27 | | elun 3263 |
. . 3
⊢ (𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪
(ℤ≥‘𝑁)) ↔ (𝑘 ∈ (𝑀...(𝑁 − 1)) ∨ 𝑘 ∈ (ℤ≥‘𝑁))) |
28 | 26, 27 | bitr4di 197 |
. 2
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (𝑘 ∈ (ℤ≥‘𝑀) ↔ 𝑘 ∈ ((𝑀...(𝑁 − 1)) ∪
(ℤ≥‘𝑁)))) |
29 | 28 | eqrdv 2163 |
1
⊢ (𝑁 ∈
(ℤ≥‘𝑀) → (ℤ≥‘𝑀) = ((𝑀...(𝑁 − 1)) ∪
(ℤ≥‘𝑁))) |