ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cau3 Unicode version

Theorem cau3 11297
Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of  j in the assertion, so it can be used with rexanuz 11170 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
cau3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
cau3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\ 
A. m  e.  (
ZZ>= `  k ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) )
Distinct variable groups:    j, k, m, x, F    j, M, k, x    j, Z, k, x
Allowed substitution hints:    M( m)    Z( m)

Proof of Theorem cau3
StepHypRef Expression
1 cau3.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
2 uzssz 9638 . . . 4  |-  ( ZZ>= `  M )  C_  ZZ
31, 2eqsstri 3216 . . 3  |-  Z  C_  ZZ
4 id 19 . . 3  |-  ( ( F `  k )  e.  CC  ->  ( F `  k )  e.  CC )
5 eleq1 2259 . . 3  |-  ( ( F `  k )  =  ( F `  j )  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
6 eleq1 2259 . . 3  |-  ( ( F `  k )  =  ( F `  m )  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
7 abssub 11283 . . . 4  |-  ( ( ( F `  j
)  e.  CC  /\  ( F `  k )  e.  CC )  -> 
( abs `  (
( F `  j
)  -  ( F `
 k ) ) )  =  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
873adant1 1017 . . 3  |-  ( ( T.  /\  ( F `
 j )  e.  CC  /\  ( F `
 k )  e.  CC )  ->  ( abs `  ( ( F `
 j )  -  ( F `  k ) ) )  =  ( abs `  ( ( F `  k )  -  ( F `  j ) ) ) )
9 abssub 11283 . . . 4  |-  ( ( ( F `  m
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  =  ( abs `  ( ( F `  j )  -  ( F `  m )
) ) )
1093adant1 1017 . . 3  |-  ( ( T.  /\  ( F `
 m )  e.  CC  /\  ( F `
 j )  e.  CC )  ->  ( abs `  ( ( F `
 m )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  j )  -  ( F `  m ) ) ) )
11 abs3lem 11293 . . . 4  |-  ( ( ( ( F `  k )  e.  CC  /\  ( F `  m
)  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  x  e.  RR ) )  -> 
( ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  (
x  /  2 )  /\  ( abs `  (
( F `  j
)  -  ( F `
 m ) ) )  <  ( x  /  2 ) )  ->  ( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x ) )
12113adant1 1017 . . 3  |-  ( ( T.  /\  ( ( F `  k )  e.  CC  /\  ( F `  m )  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  x  e.  RR )
)  ->  ( (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  ( x  /  2 )  /\  ( abs `  ( ( F `  j )  -  ( F `  m ) ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x ) )
133, 4, 5, 6, 8, 10, 12cau3lem 11296 . 2  |-  ( T. 
->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\ 
A. m  e.  (
ZZ>= `  k ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) ) )
1413mptru 1373 1  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\ 
A. m  e.  (
ZZ>= `  k ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364   T. wtru 1365    e. wcel 2167   A.wral 2475   E.wrex 2476   class class class wbr 4034   ` cfv 5259  (class class class)co 5925   CCcc 7894   RRcr 7895    < clt 8078    - cmin 8214    / cdiv 8716   2c2 9058   ZZcz 9343   ZZ>=cuz 9618   RR+crp 9745   abscabs 11179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-mulrcl 7995  ax-addcom 7996  ax-mulcom 7997  ax-addass 7998  ax-mulass 7999  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-1rid 8003  ax-0id 8004  ax-rnegex 8005  ax-precex 8006  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012  ax-pre-mulgt0 8013  ax-pre-mulext 8014  ax-arch 8015  ax-caucvg 8016
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-po 4332  df-iso 4333  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-reap 8619  df-ap 8626  df-div 8717  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-n0 9267  df-z 9344  df-uz 9619  df-rp 9746  df-seqfrec 10557  df-exp 10648  df-cj 11024  df-re 11025  df-im 11026  df-rsqrt 11180  df-abs 11181
This theorem is referenced by:  cau4  11298  serf0  11534
  Copyright terms: Public domain W3C validator