ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cau3 Unicode version

Theorem cau3 11368
Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of  j in the assertion, so it can be used with rexanuz 11241 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
cau3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
cau3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\ 
A. m  e.  (
ZZ>= `  k ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) )
Distinct variable groups:    j, k, m, x, F    j, M, k, x    j, Z, k, x
Allowed substitution hints:    M( m)    Z( m)

Proof of Theorem cau3
StepHypRef Expression
1 cau3.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
2 uzssz 9667 . . . 4  |-  ( ZZ>= `  M )  C_  ZZ
31, 2eqsstri 3224 . . 3  |-  Z  C_  ZZ
4 id 19 . . 3  |-  ( ( F `  k )  e.  CC  ->  ( F `  k )  e.  CC )
5 eleq1 2267 . . 3  |-  ( ( F `  k )  =  ( F `  j )  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
6 eleq1 2267 . . 3  |-  ( ( F `  k )  =  ( F `  m )  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
7 abssub 11354 . . . 4  |-  ( ( ( F `  j
)  e.  CC  /\  ( F `  k )  e.  CC )  -> 
( abs `  (
( F `  j
)  -  ( F `
 k ) ) )  =  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
873adant1 1017 . . 3  |-  ( ( T.  /\  ( F `
 j )  e.  CC  /\  ( F `
 k )  e.  CC )  ->  ( abs `  ( ( F `
 j )  -  ( F `  k ) ) )  =  ( abs `  ( ( F `  k )  -  ( F `  j ) ) ) )
9 abssub 11354 . . . 4  |-  ( ( ( F `  m
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  =  ( abs `  ( ( F `  j )  -  ( F `  m )
) ) )
1093adant1 1017 . . 3  |-  ( ( T.  /\  ( F `
 m )  e.  CC  /\  ( F `
 j )  e.  CC )  ->  ( abs `  ( ( F `
 m )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  j )  -  ( F `  m ) ) ) )
11 abs3lem 11364 . . . 4  |-  ( ( ( ( F `  k )  e.  CC  /\  ( F `  m
)  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  x  e.  RR ) )  -> 
( ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  (
x  /  2 )  /\  ( abs `  (
( F `  j
)  -  ( F `
 m ) ) )  <  ( x  /  2 ) )  ->  ( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x ) )
12113adant1 1017 . . 3  |-  ( ( T.  /\  ( ( F `  k )  e.  CC  /\  ( F `  m )  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  x  e.  RR )
)  ->  ( (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  ( x  /  2 )  /\  ( abs `  ( ( F `  j )  -  ( F `  m ) ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x ) )
133, 4, 5, 6, 8, 10, 12cau3lem 11367 . 2  |-  ( T. 
->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\ 
A. m  e.  (
ZZ>= `  k ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) ) )
1413mptru 1381 1  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\ 
A. m  e.  (
ZZ>= `  k ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372   T. wtru 1373    e. wcel 2175   A.wral 2483   E.wrex 2484   class class class wbr 4043   ` cfv 5270  (class class class)co 5943   CCcc 7922   RRcr 7923    < clt 8106    - cmin 8242    / cdiv 8744   2c2 9086   ZZcz 9371   ZZ>=cuz 9647   RR+crp 9774   abscabs 11250
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479  ax-setind 4584  ax-iinf 4635  ax-cnex 8015  ax-resscn 8016  ax-1cn 8017  ax-1re 8018  ax-icn 8019  ax-addcl 8020  ax-addrcl 8021  ax-mulcl 8022  ax-mulrcl 8023  ax-addcom 8024  ax-mulcom 8025  ax-addass 8026  ax-mulass 8027  ax-distr 8028  ax-i2m1 8029  ax-0lt1 8030  ax-1rid 8031  ax-0id 8032  ax-rnegex 8033  ax-precex 8034  ax-cnre 8035  ax-pre-ltirr 8036  ax-pre-ltwlin 8037  ax-pre-lttrn 8038  ax-pre-apti 8039  ax-pre-ltadd 8040  ax-pre-mulgt0 8041  ax-pre-mulext 8042  ax-arch 8043  ax-caucvg 8044
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-nel 2471  df-ral 2488  df-rex 2489  df-reu 2490  df-rmo 2491  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-po 4342  df-iso 4343  df-iord 4412  df-on 4414  df-ilim 4415  df-suc 4417  df-iom 4638  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-riota 5898  df-ov 5946  df-oprab 5947  df-mpo 5948  df-1st 6225  df-2nd 6226  df-recs 6390  df-frec 6476  df-pnf 8108  df-mnf 8109  df-xr 8110  df-ltxr 8111  df-le 8112  df-sub 8244  df-neg 8245  df-reap 8647  df-ap 8654  df-div 8745  df-inn 9036  df-2 9094  df-3 9095  df-4 9096  df-n0 9295  df-z 9372  df-uz 9648  df-rp 9775  df-seqfrec 10591  df-exp 10682  df-cj 11095  df-re 11096  df-im 11097  df-rsqrt 11251  df-abs 11252
This theorem is referenced by:  cau4  11369  serf0  11605
  Copyright terms: Public domain W3C validator