ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cau3 Unicode version

Theorem cau3 10609
Description: Convert between three-quantifier and four-quantifier versions of the Cauchy criterion. (In particular, the four-quantifier version has no occurrence of  j in the assertion, so it can be used with rexanuz 10482 and friends.) (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
cau3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
cau3  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\ 
A. m  e.  (
ZZ>= `  k ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) )
Distinct variable groups:    j, k, m, x, F    j, M, k, x    j, Z, k, x
Allowed substitution hints:    M( m)    Z( m)

Proof of Theorem cau3
StepHypRef Expression
1 cau3.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
2 uzssz 9099 . . . 4  |-  ( ZZ>= `  M )  C_  ZZ
31, 2eqsstri 3057 . . 3  |-  Z  C_  ZZ
4 id 19 . . 3  |-  ( ( F `  k )  e.  CC  ->  ( F `  k )  e.  CC )
5 eleq1 2151 . . 3  |-  ( ( F `  k )  =  ( F `  j )  ->  (
( F `  k
)  e.  CC  <->  ( F `  j )  e.  CC ) )
6 eleq1 2151 . . 3  |-  ( ( F `  k )  =  ( F `  m )  ->  (
( F `  k
)  e.  CC  <->  ( F `  m )  e.  CC ) )
7 abssub 10595 . . . 4  |-  ( ( ( F `  j
)  e.  CC  /\  ( F `  k )  e.  CC )  -> 
( abs `  (
( F `  j
)  -  ( F `
 k ) ) )  =  ( abs `  ( ( F `  k )  -  ( F `  j )
) ) )
873adant1 962 . . 3  |-  ( ( T.  /\  ( F `
 j )  e.  CC  /\  ( F `
 k )  e.  CC )  ->  ( abs `  ( ( F `
 j )  -  ( F `  k ) ) )  =  ( abs `  ( ( F `  k )  -  ( F `  j ) ) ) )
9 abssub 10595 . . . 4  |-  ( ( ( F `  m
)  e.  CC  /\  ( F `  j )  e.  CC )  -> 
( abs `  (
( F `  m
)  -  ( F `
 j ) ) )  =  ( abs `  ( ( F `  j )  -  ( F `  m )
) ) )
1093adant1 962 . . 3  |-  ( ( T.  /\  ( F `
 m )  e.  CC  /\  ( F `
 j )  e.  CC )  ->  ( abs `  ( ( F `
 m )  -  ( F `  j ) ) )  =  ( abs `  ( ( F `  j )  -  ( F `  m ) ) ) )
11 abs3lem 10605 . . . 4  |-  ( ( ( ( F `  k )  e.  CC  /\  ( F `  m
)  e.  CC )  /\  ( ( F `
 j )  e.  CC  /\  x  e.  RR ) )  -> 
( ( ( abs `  ( ( F `  k )  -  ( F `  j )
) )  <  (
x  /  2 )  /\  ( abs `  (
( F `  j
)  -  ( F `
 m ) ) )  <  ( x  /  2 ) )  ->  ( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x ) )
12113adant1 962 . . 3  |-  ( ( T.  /\  ( ( F `  k )  e.  CC  /\  ( F `  m )  e.  CC )  /\  (
( F `  j
)  e.  CC  /\  x  e.  RR )
)  ->  ( (
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  ( x  /  2 )  /\  ( abs `  ( ( F `  j )  -  ( F `  m ) ) )  <  ( x  / 
2 ) )  -> 
( abs `  (
( F `  k
)  -  ( F `
 m ) ) )  <  x ) )
133, 4, 5, 6, 8, 10, 12cau3lem 10608 . 2  |-  ( T. 
->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\ 
A. m  e.  (
ZZ>= `  k ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) ) )
1413mptru 1299 1  |-  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\ 
A. m  e.  (
ZZ>= `  k ) ( abs `  ( ( F `  k )  -  ( F `  m ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1290   T. wtru 1291    e. wcel 1439   A.wral 2360   E.wrex 2361   class class class wbr 3851   ` cfv 5028  (class class class)co 5666   CCcc 7409   RRcr 7410    < clt 7583    - cmin 7714    / cdiv 8200   2c2 8534   ZZcz 8811   ZZ>=cuz 9080   RR+crp 9195   abscabs 10491
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-coll 3960  ax-sep 3963  ax-nul 3971  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-iinf 4416  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-mulrcl 7505  ax-addcom 7506  ax-mulcom 7507  ax-addass 7508  ax-mulass 7509  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-1rid 7513  ax-0id 7514  ax-rnegex 7515  ax-precex 7516  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-apti 7521  ax-pre-ltadd 7522  ax-pre-mulgt0 7523  ax-pre-mulext 7524  ax-arch 7525  ax-caucvg 7526
This theorem depends on definitions:  df-bi 116  df-dc 782  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rmo 2368  df-rab 2369  df-v 2622  df-sbc 2842  df-csb 2935  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-nul 3288  df-if 3398  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-iun 3738  df-br 3852  df-opab 3906  df-mpt 3907  df-tr 3943  df-id 4129  df-po 4132  df-iso 4133  df-iord 4202  df-on 4204  df-ilim 4205  df-suc 4207  df-iom 4419  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-rn 4463  df-res 4464  df-ima 4465  df-iota 4993  df-fun 5030  df-fn 5031  df-f 5032  df-f1 5033  df-fo 5034  df-f1o 5035  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-1st 5925  df-2nd 5926  df-recs 6084  df-frec 6170  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-reap 8113  df-ap 8120  df-div 8201  df-inn 8484  df-2 8542  df-3 8543  df-4 8544  df-n0 8735  df-z 8812  df-uz 9081  df-rp 9196  df-iseq 9914  df-seq3 9915  df-exp 10016  df-cj 10337  df-re 10338  df-im 10339  df-rsqrt 10492  df-abs 10493
This theorem is referenced by:  cau4  10610  serf0  10802
  Copyright terms: Public domain W3C validator