ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1le2 GIF version

Theorem 1le2 9315
Description: 1 is less than or equal to 2 (common case). (Contributed by David A. Wheeler, 8-Dec-2018.)
Assertion
Ref Expression
1le2 1 ≤ 2

Proof of Theorem 1le2
StepHypRef Expression
1 1re 8141 . 2 1 ∈ ℝ
2 2re 9176 . 2 2 ∈ ℝ
3 1lt2 9276 . 2 1 < 2
41, 2, 3ltleii 8245 1 1 ≤ 2
Colors of variables: wff set class
Syntax hints:   class class class wbr 4082  1c1 7996  cle 8178  2c2 9157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-addcom 8095  ax-addass 8097  ax-i2m1 8100  ax-0lt1 8101  ax-0id 8103  ax-rnegex 8104  ax-pre-ltirr 8107  ax-pre-lttrn 8109  ax-pre-ltadd 8111
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-xp 4724  df-cnv 4726  df-iota 5277  df-fv 5325  df-ov 6003  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-2 9165
This theorem is referenced by:  eluz2nn  9757  2eluzge1  9767  resqrexlemover  11516  ef01bndlem  12262  bitsmod  12462  prmdc  12647  cos0pilt1  15520  gausslemma2dlem0c  15724  gausslemma2dlem1a  15731
  Copyright terms: Public domain W3C validator