ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz2nn GIF version

Theorem eluz2nn 9717
Description: An integer is greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
eluz2nn (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)

Proof of Theorem eluz2nn
StepHypRef Expression
1 1z 9428 . . 3 1 ∈ ℤ
2 1le2 9275 . . 3 1 ≤ 2
3 eluzuzle 9686 . . 3 ((1 ∈ ℤ ∧ 1 ≤ 2) → (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ (ℤ‘1)))
41, 2, 3mp2an 426 . 2 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ (ℤ‘1))
5 nnuz 9714 . 2 ℕ = (ℤ‘1)
64, 5eleqtrrdi 2300 1 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 2177   class class class wbr 4054  cfv 5285  1c1 7956  cle 8138  cn 9066  2c2 9117  cz 9402  cuz 9678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-addcom 8055  ax-addass 8057  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-0id 8063  ax-rnegex 8064  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-ltadd 8071
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-inn 9067  df-2 9125  df-z 9403  df-uz 9679
This theorem is referenced by:  eluz4nn  9719  eluzge2nn0  9720  eluz2n0  9721  elnn1uz2  9758  zgt1rpn0n1  9847  modm1div  12196  isprm3  12525  isprm4  12526  prmind2  12527  nprm  12530  exprmfct  12545  prmdvdsfz  12546  isprm5lem  12548  isprm6  12554  phibndlem  12623  phibnd  12624  dfphi2  12627  pclemub  12695  pcprendvds2  12699  pcpre1  12700  dvdsprmpweqnn  12744  expnprm  12761  4sqlem15  12813  4sqlem16  12814  infpn2  12912  logbrec  15517  logbgcd1irr  15524  logbgcd1irraplemexp  15525  logbgcd1irraplemap  15526  mersenne  15554  lgsquad2lem2  15644  2sqlem6  15682
  Copyright terms: Public domain W3C validator