| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluz2nn | GIF version | ||
| Description: An integer is greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.) |
| Ref | Expression |
|---|---|
| eluz2nn | ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9397 | . . 3 ⊢ 1 ∈ ℤ | |
| 2 | 1le2 9244 | . . 3 ⊢ 1 ≤ 2 | |
| 3 | eluzuzle 9655 | . . 3 ⊢ ((1 ∈ ℤ ∧ 1 ≤ 2) → (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ (ℤ≥‘1))) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ (ℤ≥‘1)) |
| 5 | nnuz 9683 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 6 | 4, 5 | eleqtrrdi 2298 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2175 class class class wbr 4043 ‘cfv 5270 1c1 7925 ≤ cle 8107 ℕcn 9035 2c2 9086 ℤcz 9371 ℤ≥cuz 9647 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-z 9372 df-uz 9648 |
| This theorem is referenced by: eluz4nn 9688 eluzge2nn0 9689 eluz2n0 9690 elnn1uz2 9727 zgt1rpn0n1 9816 modm1div 12082 isprm3 12411 isprm4 12412 prmind2 12413 nprm 12416 exprmfct 12431 prmdvdsfz 12432 isprm5lem 12434 isprm6 12440 phibndlem 12509 phibnd 12510 dfphi2 12513 pclemub 12581 pcprendvds2 12585 pcpre1 12586 dvdsprmpweqnn 12630 expnprm 12647 4sqlem15 12699 4sqlem16 12700 infpn2 12798 logbrec 15403 logbgcd1irr 15410 logbgcd1irraplemexp 15411 logbgcd1irraplemap 15412 mersenne 15440 lgsquad2lem2 15530 2sqlem6 15568 |
| Copyright terms: Public domain | W3C validator |