| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluz2nn | GIF version | ||
| Description: An integer is greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.) |
| Ref | Expression |
|---|---|
| eluz2nn | ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9355 | . . 3 ⊢ 1 ∈ ℤ | |
| 2 | 1le2 9202 | . . 3 ⊢ 1 ≤ 2 | |
| 3 | eluzuzle 9612 | . . 3 ⊢ ((1 ∈ ℤ ∧ 1 ≤ 2) → (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ (ℤ≥‘1))) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ (ℤ≥‘1)) |
| 5 | nnuz 9640 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 6 | 4, 5 | eleqtrrdi 2290 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2167 class class class wbr 4034 ‘cfv 5259 1c1 7883 ≤ cle 8065 ℕcn 8993 2c2 9044 ℤcz 9329 ℤ≥cuz 9604 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-cnex 7973 ax-resscn 7974 ax-1cn 7975 ax-1re 7976 ax-icn 7977 ax-addcl 7978 ax-addrcl 7979 ax-mulcl 7980 ax-addcom 7982 ax-addass 7984 ax-distr 7986 ax-i2m1 7987 ax-0lt1 7988 ax-0id 7990 ax-rnegex 7991 ax-cnre 7993 ax-pre-ltirr 7994 ax-pre-ltwlin 7995 ax-pre-lttrn 7996 ax-pre-ltadd 7998 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-fv 5267 df-riota 5878 df-ov 5926 df-oprab 5927 df-mpo 5928 df-pnf 8066 df-mnf 8067 df-xr 8068 df-ltxr 8069 df-le 8070 df-sub 8202 df-neg 8203 df-inn 8994 df-2 9052 df-z 9330 df-uz 9605 |
| This theorem is referenced by: eluz4nn 9645 eluzge2nn0 9646 eluz2n0 9647 elnn1uz2 9684 zgt1rpn0n1 9773 modm1div 11968 isprm3 12297 isprm4 12298 prmind2 12299 nprm 12302 exprmfct 12317 prmdvdsfz 12318 isprm5lem 12320 isprm6 12326 phibndlem 12395 phibnd 12396 dfphi2 12399 pclemub 12467 pcprendvds2 12471 pcpre1 12472 dvdsprmpweqnn 12516 expnprm 12533 4sqlem15 12585 4sqlem16 12586 infpn2 12684 logbrec 15222 logbgcd1irr 15229 logbgcd1irraplemexp 15230 logbgcd1irraplemap 15231 mersenne 15259 lgsquad2lem2 15349 2sqlem6 15387 |
| Copyright terms: Public domain | W3C validator |