| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > eluz2nn | GIF version | ||
| Description: An integer is greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.) |
| Ref | Expression |
|---|---|
| eluz2nn | ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1z 9468 | . . 3 ⊢ 1 ∈ ℤ | |
| 2 | 1le2 9315 | . . 3 ⊢ 1 ≤ 2 | |
| 3 | eluzuzle 9726 | . . 3 ⊢ ((1 ∈ ℤ ∧ 1 ≤ 2) → (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ (ℤ≥‘1))) | |
| 4 | 1, 2, 3 | mp2an 426 | . 2 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ (ℤ≥‘1)) |
| 5 | nnuz 9754 | . 2 ⊢ ℕ = (ℤ≥‘1) | |
| 6 | 4, 5 | eleqtrrdi 2323 | 1 ⊢ (𝐴 ∈ (ℤ≥‘2) → 𝐴 ∈ ℕ) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∈ wcel 2200 class class class wbr 4082 ‘cfv 5317 1c1 7996 ≤ cle 8178 ℕcn 9106 2c2 9157 ℤcz 9442 ℤ≥cuz 9718 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-z 9443 df-uz 9719 |
| This theorem is referenced by: eluz4nn 9759 eluzge2nn0 9760 eluz2n0 9761 elnn1uz2 9798 zgt1rpn0n1 9887 modm1div 12306 isprm3 12635 isprm4 12636 prmind2 12637 nprm 12640 exprmfct 12655 prmdvdsfz 12656 isprm5lem 12658 isprm6 12664 phibndlem 12733 phibnd 12734 dfphi2 12737 pclemub 12805 pcprendvds2 12809 pcpre1 12810 dvdsprmpweqnn 12854 expnprm 12871 4sqlem15 12923 4sqlem16 12924 infpn2 13022 logbrec 15628 logbgcd1irr 15635 logbgcd1irraplemexp 15636 logbgcd1irraplemap 15637 mersenne 15665 lgsquad2lem2 15755 2sqlem6 15793 |
| Copyright terms: Public domain | W3C validator |