ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eluz2nn GIF version

Theorem eluz2nn 9266
Description: An integer is greater than or equal to 2 is a positive integer. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
eluz2nn (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)

Proof of Theorem eluz2nn
StepHypRef Expression
1 1z 8984 . . 3 1 ∈ ℤ
2 1le2 8832 . . 3 1 ≤ 2
3 eluzuzle 9236 . . 3 ((1 ∈ ℤ ∧ 1 ≤ 2) → (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ (ℤ‘1)))
41, 2, 3mp2an 420 . 2 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ (ℤ‘1))
5 nnuz 9263 . 2 ℕ = (ℤ‘1)
64, 5syl6eleqr 2208 1 (𝐴 ∈ (ℤ‘2) → 𝐴 ∈ ℕ)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1463   class class class wbr 3895  cfv 5081  1c1 7548  cle 7725  cn 8630  2c2 8681  cz 8958  cuz 9228
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-addcom 7645  ax-addass 7647  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-0id 7653  ax-rnegex 7654  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-ltadd 7661
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rab 2399  df-v 2659  df-sbc 2879  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-inn 8631  df-2 8689  df-z 8959  df-uz 9229
This theorem is referenced by:  eluzge2nn0  9267  elnn1uz2  9303  isprm3  11645  isprm4  11646  prmind2  11647  nprm  11650  exprmfct  11664  prmdvdsfz  11665  isprm6  11671  phibndlem  11737  phibnd  11738  dfphi2  11741
  Copyright terms: Public domain W3C validator