ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1pr GIF version

Theorem 1pr 7495
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
1pr 1PP

Proof of Theorem 1pr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-i1p 7408 . 2 1P = ⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩
2 1nq 7307 . . 3 1QQ
3 nqprlu 7488 . . 3 (1QQ → ⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩ ∈ P)
42, 3ax-mp 5 . 2 ⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩ ∈ P
51, 4eqeltri 2239 1 1PP
Colors of variables: wff set class
Syntax hints:  wcel 2136  {cab 2151  cop 3579   class class class wbr 3982  Qcnq 7221  1Qc1q 7222   <Q cltq 7226  Pcnp 7232  1Pc1p 7233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-eprel 4267  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-1o 6384  df-oadd 6388  df-omul 6389  df-er 6501  df-ec 6503  df-qs 6507  df-ni 7245  df-pli 7246  df-mi 7247  df-lti 7248  df-plpq 7285  df-mpq 7286  df-enq 7288  df-nqqs 7289  df-plqqs 7290  df-mqqs 7291  df-1nqqs 7292  df-rq 7293  df-ltnqqs 7294  df-inp 7407  df-i1p 7408
This theorem is referenced by:  1idprl  7531  1idpru  7532  1idpr  7533  recexprlemex  7578  ltmprr  7583  gt0srpr  7689  0r  7691  1sr  7692  m1r  7693  m1p1sr  7701  m1m1sr  7702  0lt1sr  7706  0idsr  7708  1idsr  7709  00sr  7710  recexgt0sr  7714  archsr  7723  srpospr  7724  prsrcl  7725  prsrpos  7726  prsradd  7727  prsrlt  7728  caucvgsrlembound  7735  ltpsrprg  7744  mappsrprg  7745  map2psrprg  7746  suplocsrlemb  7747  suplocsrlempr  7748  pitonnlem1p1  7787  pitonnlem2  7788  pitonn  7789  pitoregt0  7790  pitore  7791  recnnre  7792  recidpirqlemcalc  7798  recidpirq  7799
  Copyright terms: Public domain W3C validator