Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 1pr | GIF version |
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
Ref | Expression |
---|---|
1pr | ⊢ 1P ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1p 7418 | . 2 ⊢ 1P = 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 | |
2 | 1nq 7317 | . . 3 ⊢ 1Q ∈ Q | |
3 | nqprlu 7498 | . . 3 ⊢ (1Q ∈ Q → 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 ∈ P) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 ∈ P |
5 | 1, 4 | eqeltri 2243 | 1 ⊢ 1P ∈ P |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2141 {cab 2156 〈cop 3584 class class class wbr 3987 Qcnq 7231 1Qc1q 7232 <Q cltq 7236 Pcnp 7242 1Pc1p 7243 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-nul 4113 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-setind 4519 ax-iinf 4570 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-tr 4086 df-eprel 4272 df-id 4276 df-po 4279 df-iso 4280 df-iord 4349 df-on 4351 df-suc 4354 df-iom 4573 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 df-ov 5854 df-oprab 5855 df-mpo 5856 df-1st 6117 df-2nd 6118 df-recs 6282 df-irdg 6347 df-1o 6393 df-oadd 6397 df-omul 6398 df-er 6510 df-ec 6512 df-qs 6516 df-ni 7255 df-pli 7256 df-mi 7257 df-lti 7258 df-plpq 7295 df-mpq 7296 df-enq 7298 df-nqqs 7299 df-plqqs 7300 df-mqqs 7301 df-1nqqs 7302 df-rq 7303 df-ltnqqs 7304 df-inp 7417 df-i1p 7418 |
This theorem is referenced by: 1idprl 7541 1idpru 7542 1idpr 7543 recexprlemex 7588 ltmprr 7593 gt0srpr 7699 0r 7701 1sr 7702 m1r 7703 m1p1sr 7711 m1m1sr 7712 0lt1sr 7716 0idsr 7718 1idsr 7719 00sr 7720 recexgt0sr 7724 archsr 7733 srpospr 7734 prsrcl 7735 prsrpos 7736 prsradd 7737 prsrlt 7738 caucvgsrlembound 7745 ltpsrprg 7754 mappsrprg 7755 map2psrprg 7756 suplocsrlemb 7757 suplocsrlempr 7758 pitonnlem1p1 7797 pitonnlem2 7798 pitonn 7799 pitoregt0 7800 pitore 7801 recnnre 7802 recidpirqlemcalc 7808 recidpirq 7809 |
Copyright terms: Public domain | W3C validator |