| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 1pr | GIF version | ||
| Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| 1pr | ⊢ 1P ∈ P |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-i1p 7551 | . 2 ⊢ 1P = 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 | |
| 2 | 1nq 7450 | . . 3 ⊢ 1Q ∈ Q | |
| 3 | nqprlu 7631 | . . 3 ⊢ (1Q ∈ Q → 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 ∈ P) | |
| 4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 ∈ P |
| 5 | 1, 4 | eqeltri 2269 | 1 ⊢ 1P ∈ P |
| Colors of variables: wff set class |
| Syntax hints: ∈ wcel 2167 {cab 2182 〈cop 3626 class class class wbr 4034 Qcnq 7364 1Qc1q 7365 <Q cltq 7369 Pcnp 7375 1Pc1p 7376 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-eprel 4325 df-id 4329 df-po 4332 df-iso 4333 df-iord 4402 df-on 4404 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-1o 6483 df-oadd 6487 df-omul 6488 df-er 6601 df-ec 6603 df-qs 6607 df-ni 7388 df-pli 7389 df-mi 7390 df-lti 7391 df-plpq 7428 df-mpq 7429 df-enq 7431 df-nqqs 7432 df-plqqs 7433 df-mqqs 7434 df-1nqqs 7435 df-rq 7436 df-ltnqqs 7437 df-inp 7550 df-i1p 7551 |
| This theorem is referenced by: 1idprl 7674 1idpru 7675 1idpr 7676 recexprlemex 7721 ltmprr 7726 gt0srpr 7832 0r 7834 1sr 7835 m1r 7836 m1p1sr 7844 m1m1sr 7845 0lt1sr 7849 0idsr 7851 1idsr 7852 00sr 7853 recexgt0sr 7857 archsr 7866 srpospr 7867 prsrcl 7868 prsrpos 7869 prsradd 7870 prsrlt 7871 caucvgsrlembound 7878 ltpsrprg 7887 mappsrprg 7888 map2psrprg 7889 suplocsrlemb 7890 suplocsrlempr 7891 pitonnlem1p1 7930 pitonnlem2 7931 pitonn 7932 pitoregt0 7933 pitore 7934 recnnre 7935 recidpirqlemcalc 7941 recidpirq 7942 |
| Copyright terms: Public domain | W3C validator |