![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 1pr | GIF version |
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.) |
Ref | Expression |
---|---|
1pr | ⊢ 1P ∈ P |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-i1p 7527 | . 2 ⊢ 1P = 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 | |
2 | 1nq 7426 | . . 3 ⊢ 1Q ∈ Q | |
3 | nqprlu 7607 | . . 3 ⊢ (1Q ∈ Q → 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 ∈ P) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ 〈{𝑥 ∣ 𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}〉 ∈ P |
5 | 1, 4 | eqeltri 2266 | 1 ⊢ 1P ∈ P |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 2164 {cab 2179 〈cop 3621 class class class wbr 4029 Qcnq 7340 1Qc1q 7341 <Q cltq 7345 Pcnp 7351 1Pc1p 7352 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-coll 4144 ax-sep 4147 ax-nul 4155 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-iinf 4620 |
This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-reu 2479 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-nul 3447 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-tr 4128 df-eprel 4320 df-id 4324 df-po 4327 df-iso 4328 df-iord 4397 df-on 4399 df-suc 4402 df-iom 4623 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-f1 5259 df-fo 5260 df-f1o 5261 df-fv 5262 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-recs 6358 df-irdg 6423 df-1o 6469 df-oadd 6473 df-omul 6474 df-er 6587 df-ec 6589 df-qs 6593 df-ni 7364 df-pli 7365 df-mi 7366 df-lti 7367 df-plpq 7404 df-mpq 7405 df-enq 7407 df-nqqs 7408 df-plqqs 7409 df-mqqs 7410 df-1nqqs 7411 df-rq 7412 df-ltnqqs 7413 df-inp 7526 df-i1p 7527 |
This theorem is referenced by: 1idprl 7650 1idpru 7651 1idpr 7652 recexprlemex 7697 ltmprr 7702 gt0srpr 7808 0r 7810 1sr 7811 m1r 7812 m1p1sr 7820 m1m1sr 7821 0lt1sr 7825 0idsr 7827 1idsr 7828 00sr 7829 recexgt0sr 7833 archsr 7842 srpospr 7843 prsrcl 7844 prsrpos 7845 prsradd 7846 prsrlt 7847 caucvgsrlembound 7854 ltpsrprg 7863 mappsrprg 7864 map2psrprg 7865 suplocsrlemb 7866 suplocsrlempr 7867 pitonnlem1p1 7906 pitonnlem2 7907 pitonn 7908 pitoregt0 7909 pitore 7910 recnnre 7911 recidpirqlemcalc 7917 recidpirq 7918 |
Copyright terms: Public domain | W3C validator |