ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1pr GIF version

Theorem 1pr 7614
Description: The positive real number 'one'. (Contributed by NM, 13-Mar-1996.) (Revised by Mario Carneiro, 12-Jun-2013.)
Assertion
Ref Expression
1pr 1PP

Proof of Theorem 1pr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-i1p 7527 . 2 1P = ⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩
2 1nq 7426 . . 3 1QQ
3 nqprlu 7607 . . 3 (1QQ → ⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩ ∈ P)
42, 3ax-mp 5 . 2 ⟨{𝑥𝑥 <Q 1Q}, {𝑦 ∣ 1Q <Q 𝑦}⟩ ∈ P
51, 4eqeltri 2266 1 1PP
Colors of variables: wff set class
Syntax hints:  wcel 2164  {cab 2179  cop 3621   class class class wbr 4029  Qcnq 7340  1Qc1q 7341   <Q cltq 7345  Pcnp 7351  1Pc1p 7352
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-eprel 4320  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-irdg 6423  df-1o 6469  df-oadd 6473  df-omul 6474  df-er 6587  df-ec 6589  df-qs 6593  df-ni 7364  df-pli 7365  df-mi 7366  df-lti 7367  df-plpq 7404  df-mpq 7405  df-enq 7407  df-nqqs 7408  df-plqqs 7409  df-mqqs 7410  df-1nqqs 7411  df-rq 7412  df-ltnqqs 7413  df-inp 7526  df-i1p 7527
This theorem is referenced by:  1idprl  7650  1idpru  7651  1idpr  7652  recexprlemex  7697  ltmprr  7702  gt0srpr  7808  0r  7810  1sr  7811  m1r  7812  m1p1sr  7820  m1m1sr  7821  0lt1sr  7825  0idsr  7827  1idsr  7828  00sr  7829  recexgt0sr  7833  archsr  7842  srpospr  7843  prsrcl  7844  prsrpos  7845  prsradd  7846  prsrlt  7847  caucvgsrlembound  7854  ltpsrprg  7863  mappsrprg  7864  map2psrprg  7865  suplocsrlemb  7866  suplocsrlempr  7867  pitonnlem1p1  7906  pitonnlem2  7907  pitonn  7908  pitoregt0  7909  pitore  7910  recnnre  7911  recidpirqlemcalc  7917  recidpirq  7918
  Copyright terms: Public domain W3C validator